首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The mechanism of DNA replication is conserved among papillomaviruses. The virus-encoded E1 and E2 proteins collaborate to target the origin and recruit host DNA replication proteins. Expression vectors of E1 and E2 proteins support homologous and heterologous papillomaviral origin replication in transiently transfected cells. Viral proteins from different genotypes can also collaborate, albeit with different efficiencies, indicating a certain degree of specificity in E1-E2 interactions. We report that, in the assays of our study, the human papillomavirus type 11 (HPV-11) E1 protein functioned with the HPV-16 E2 protein, whereas the HPV-16 E1 protein exhibited no detectable activity with the HPV-11 E2 protein. Taking advantage of this distinction, we used chimeric E1 proteins to delineate the E1 protein domains responsible for this specificity. Hybrids containing HPV-16 E1 amino-terminal residues up to residue 365 efficiently replicated either viral origin in the presence of either E2 protein. The reciprocal hybrids containing amino-terminal HPV-11 sequences exhibited a high activity with HPV-16 E2 but no activity with HPV-11 E2. Reciprocal hybrid proteins with the carboxyl-terminal 44 residues from either E1 had an intermediate property, but both collaborated more efficiently with HPV-16 E2 than with HPV-11 E2. In contrast, chimeras with a junction in the putative ATPase domain showed little or no activity with either E2 protein. We conclude that the E1 protein consists of distinct structural and functional domains, with the carboxyl-terminal 284 residues of the HPV-16 E1 protein being the primary determinant for E2 specificity during replication, and that chimeric exchanges in or bordering the ATPase domain inactivate the protein.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
The E5 protein of human papillomavirus type 16 is a small, hydrophobic protein that localizes predominantly to membranes of the endoplasmic reticulum (ER). To define the orientation of E5 in these membranes, we employed a differential, detergent permeabilization technique that makes use of the ability of low concentrations of digitonin to selectively permeabilize the plasma membrane and saponin to permeabilize all cellular membranes. We then generated a biologically active E5 protein that was epitope tagged at both its N and C termini and determined the accessibility of these termini to antibodies in the presence and absence of detergents. In both COS cells and human ectocervical cells, the C terminus of E5 was exposed to the cytoplasm, whereas the N terminus was restricted to the lumen of the ER. Finally, the deletion of the E5 third transmembrane domain (and terminal hydrophilic amino acids) resulted in a protein with its C terminus in the ER lumen. Taken together, these topology findings are compatible with a model of E5 being a 3-pass transmembrane protein and with studies demonstrating its C terminus interacting with cytoplasmic proteins.Human papillomaviruses (HPVs) are small, nonenveloped, double-stranded DNA viruses (25) that are the causative agents of benign and malignant tumors in humans (43). Most cancers of the cervix, vagina, and anus are caused by HPVs, as are a fraction of oropharyngeal cancers (29, 44). HPV type 16 (HPV-16) is the type most frequently found in anogenital cancers (15, 29), including cervical cancer, the most common cancer of women worldwide (44).Some of the biological activities of the HPV-16 E5 protein (16E5) include the augmentation of epidermal growth factor (EGF) signaling pathways (8), stimulation of anchorage-independent growth (38), alkalinization of endosomal pH (11), and alteration of membrane lipid composition (39). 16E5 also exhibits weak transforming activity in vitro (12), induces epithelial tumors in transgenic mice (13), and plays an important role in koilocytosis (20). There are multiple documented intracellular binding targets for 16E5 such as the 16-kDa subunit of the vacuolar H+-ATPase (7, 36), the heavy chain of HLA type I (1), EGF receptor family member ErbB4 (6), calnexin (16), the zinc transporter ZnT-1 (21), the EVER1 and EVER2 transmembrane channel-like proteins that modulate zinc homeostasis (21, 31), the nuclear import receptor family member karyopherin β3 (KNβ3) (19), and BAP31, which was previously reported to contribute to B-cell receptor activation (35).16E5 is a small, hydrophobic protein that localizes to intracellular membranes. When overexpressed in COS cells, it is present in the endoplasmic reticulum (ER) and, to a lesser extent, in the Golgi apparatus (7). At a lower level of expression in human foreskin keratinocytes and human ectocervical cells (HECs), 16E5 is present predominantly in the ER (10, 39). 16E5 contains three hydrophobic regions (14, 16, 22, 30, 41), and it was reported previously that the first hydrophobic region determines various biological properties of the protein (16, 22). It was also shown previously that the 16E5 C terminus plays a role in binding to karyopherin β3 (19) and in the formation of koilocytes (20). While theoretical predictions have been made for the topology of E5 in membranes (16), no experimental data exist. However, a recent study suggested that some highly expressed 16E5 localizes to the plasma membrane, with its C terminus exposed externally (18).The aim of the present study was to establish the orientation of 16E5 in the ER membrane. By using immunofluorescence microscopy coupled with differential membrane permeabilization (24, 34), we demonstrate the membrane orientation of an N- and C-terminally tagged, biologically active 16E5 protein. Our results indicate that the N terminus is intralumenal and that the C terminus is cytoplasmic, consistent with a model of E5 being a three-pass transmembrane protein and with current data on the interaction of its C terminus with cytoplasmic proteins.  相似文献   

15.
16.
17.
Proteomic identification of human papillomavirus type 16 (HPV16) E6-interacting proteins revealed several proteins involved in ubiquitin-mediated proteolysis. In addition to the well-characterized E6AP ubiquitin-protein ligase, a second HECT domain protein (HERC2) and a deubiquitylating enzyme (USP15) were identified by tandem affinity purification of HPV16 E6-associated proteins. This study focuses on the functional consequences of the interaction of E6 with USP15. Overexpression of USP15 resulted in increased levels of the E6 protein, and the small interfering RNA-mediated knockdown of USP15 decreased E6 protein levels. These results implicate USP15 directly in the regulation of E6 protein stability and suggest that ubiquitylated E6 could be a substrate for USP15 ubiquitin peptidase activity. It remains possible that E6 could affect the activity of USP15 on specific cellular substrates, a hypothesis that can be tested as more is learned about the substrates and pathways controlled by USP15.Human papillomaviruses (HPVs) are associated with several human cancers, most notably human cervical cancer, the second most common cancer among women worldwide (43). Papillomaviruses cause proliferative squamous epithelial lesions, and more than 100 HPV types have been described (14). The HPV types associated with mucosal squamous epithelial lesions have been further classified into high- or low-risk types based on the propensity for the lesions with which they are associated to progress to cancer. Among the high-risk HPV types, HPV type 16 (HPV16) and HPV18 account for approximately 70% of cervical cancers (43). The high-risk HPV types carry two genes, the E6 and E7 genes, which have oncogenic properties and are always expressed in HPV-positive cancers. E6 and E7 interfere with the p53 and retinoblastoma (pRB) tumor suppressor pathways, respectively, and contribute directly to cell cycle alterations, protection from apoptosis, and transformation (14). The dysregulated expression of the E6 and E7 oncoproteins is an important step in the progression from a preneoplastic stage to cancer in HPV-infected cells and is often a consequence of the integration of the viral genome into the host chromosome.The interaction between E6 and p53 is mediated by the E3 ubiquitin ligase E6AP (15). E6, p53, and E6AP form a complex in which E6 directs the ligase activity of E6AP to p53, thereby targeting p53 for ubiquitin-mediated degradation (36). E6, however, has a number of other cellular partners and other functions. For instance, the C terminus of the high-risk E6 protein contains a PDZ binding motif (20, 25) that mediates the interaction with several PDZ domain-containing proteins, including discs large (Dlg), Scribble (Scrib), the MAGI family of proteins, MUPP1, and PATJ (9, 10, 29). Some of these proteins are also targeted for degradation in an E6AP-dependent manner (22, 29). While the major mechanism of oncogenesis revolves around E6''s ability to inhibit the proapoptotic effects of p53, recent work involving the PDZ domain proteins indicates that these interactions are also important to the oncogenic potential of E6 (38, 41). Furthermore, E6 has been reported to bind a number of other cellular proteins, including but not limited to Bak, CBP/p300, c-Myc, E6TP1, hADA3, IRF3, MCM7, PTPH1, and TNF-R1 (7, 8, 17, 23, 24, 32, 35, 39, 40). The importance of the binding of several of these proteins with regard to the transformation or other functions of E6 remains to be established. E6 itself is thought to be targeted for degradation by an ubiquitin-proteasome pathway (18), although how E6 protein stability is regulated has not been well studied.Many of the E6 binding partners have been identified using purified bacterially expressed E6 fusion proteins and cell lysates from various cell types or using yeast two-hybrid screenings. While some of these interactions with E6 have been validated, the physiologic relevance of a number of proposed E6 targets remains undetermined. In an effort to identify E6-interacting proteins, perhaps under more physiologic conditions, we employed tandem affinity purification (TAP) using tagged HPV16 E6 stably expressed in the HPV16-positive cervical cancer cell line SiHa. We have discovered several new interacting proteins, including an interaction between E6 and the cellular deubiquitylating enzyme (DUB) USP15. USP15 is not targeted for degradation by E6, but we found that USP15 stabilizes E6 protein levels, suggesting that E6 may itself be a target for USP15 DUB activity.  相似文献   

18.
The E7 protein of human papillomavirus type 16 was produced in Lactococcus lactis. Secretion allowed higher production yields than cytoplasmic production. In stationary phase, amounts of cytoplasmic E7 were reduced, while amounts of secreted E7 increased, suggesting a phase-dependent intracellular proteolysis. Fusion of E7 to the staphylococcal nuclease, a stable protein, resulted in a highly stable cytoplasmic protein. This work provides new candidates for development of viral screening systems and for oral vaccine against cervical cancer.  相似文献   

19.
20.

Background

The E7 protein of the Human Papillomavirus (HPV) type 16, being involved in malignant cellular transformation, represents a key antigen for developing therapeutic vaccines against HPV-related lesions and cancers. Recombinant production of this vaccine antigen in an active form and in compliance with good manufacturing practices (GMP) plays a crucial role for developing effective vaccines. E7-based therapeutic vaccines produced in plants have been shown to be active in tumor regression and protection in pre-clinical models. However, some drawbacks of in whole-plant vaccine production encouraged us to explore the production of the E7-based therapeutic vaccine in Chlamydomonas reinhardtii, an organism easy to grow and transform and fully amenable to GMP guidelines.

Methodology/Principal Findings

An expression cassette encoding E7GGG, a mutated, attenuated form of the E7 oncoprotein, alone or as a fusion with affinity tags (His6 or FLAG), under the control of the C. reinhardtii chloroplast psbD 5′ UTR and the psbA 3′ UTR, was introduced into the C. reinhardtii chloroplast genome by homologous recombination. The protein was mostly soluble and reached 0.12% of total soluble proteins. Affinity purification was optimized and performed for both tagged forms. Induction of specific anti-E7 IgGs and E7-specific T-cell proliferation were detected in C57BL/6 mice vaccinated with total Chlamydomonas extract and with affinity-purified protein. High levels of tumor protection were achieved after challenge with a tumor cell line expressing the E7 protein.

Conclusions

The C. reinhardtii chloroplast is a suitable expression system for the production of the E7GGG protein, in a soluble, immunogenic form. The production in contained and sterile conditions highlights the potential of microalgae as alternative platforms for the production of vaccines for human uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号