首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonreceptor isoform of tyrosine phosphatase epsilon (cyt-PTPe) supports osteoclast adhesion and activity in vivo, leading to increased bone mass in female mice lacking PTPe (EKO mice). The structure and organization of the podosomal adhesion structures of EKO osteoclasts are abnormal; the molecular mechanism behind this is unknown. We show here that EKO podosomes are disorganized, unusually stable, and reorganize poorly in response to physical contact. Phosphorylation and activities of Src, Pyk2, and Rac are decreased and Rho activity is increased in EKO osteoclasts, suggesting that integrin signaling is defective in these cells. Integrin activation regulates cyt-PTPe by inducing Src-dependent phosphorylation of cyt-PTPe at Y638. This phosphorylation event is crucial because wild-type—but not Y638F—cyt-PTPe binds and further activates Src and restores normal stability to podosomes in EKO osteoclasts. Increasing Src activity or inhibiting Rho or its downstream effector Rho kinase in EKO osteoclasts rescues their podosomal stability phenotype, indicating that cyt-PTPe affects podosome stability by functioning upstream of these molecules. We conclude that cyt-PTPe participates in a feedback loop that ensures proper Src activation downstream of integrins, thus linking integrin signaling with Src activation and accurate organization and stability of podosomes in osteoclasts.  相似文献   

2.
The aim of this study is to identify the exact mechanism(s) by which cytoskeletal structures are modulated during bone resorption. In this study, we have shown the possible role of different actin-binding and signaling proteins in the regulation of sealing ring formation. Our analyses have demonstrated a significant increase in cortactin and a corresponding decrease in L-plastin protein levels in osteoclasts subjected to bone resorption for 18 h in the presence of RANKL, M-CSF, and native bone particles. Time-dependent changes in the localization of L-plastin (in actin aggregates) and cortactin (in the sealing ring) suggest that these proteins may be involved in the initial and maturation phases of sealing ring formation, respectively. siRNA to cortactin inhibits this maturation process but not the formation of actin aggregates. Osteoclasts treated as above but with TNF-α demonstrated very similar effects as observed with RANKL. Osteoclasts treated with a neutralizing antibody to TNF-α displayed podosome-like structures in the entire subsurface and at the periphery of osteoclast. It is possible that TNF-α and RANKL-mediated signaling may play a role in the early phase of sealing ring configuration (i.e. either in the disassembly of podosomes or formation of actin aggregates). Furthermore, osteoclasts treated with alendronate or αv reduced the formation of the sealing ring but not actin aggregates. The present study demonstrates a novel mechanistic link between L-plastin and cortactin in sealing ring formation. These results suggest that actin aggregates formed by L-plastin independent of integrin signaling function as a core in assembling signaling molecules (integrin αvβ3, Src, cortactin, etc.) involved in the maturation process.  相似文献   

3.
4.
We here identify protein kinase D (PKD) as an upstream regulator of the F-actin-binding protein cortactin and the Arp actin polymerization machinery. PKD phosphorylates cortactin in vitro and in vivo at serine 298 thereby generating a 14-3-3 binding motif. In vitro, a phosphorylation-deficient cortactin-S298A protein accelerated VCA-Arp-cortactin-mediated synergistic actin polymerization and showed reduced F-actin binding, indicative of enhanced turnover of nucleation complexes. In vivo, cortactin co-localized with the nucleation promoting factor WAVE2, essential for lamellipodia extension, in the actin polymerization zone in Heregulin-treated MCF-7 cells. Using a 3-dye FRET-based approach we further demonstrate that WAVE2-Arp and cortactin prominently interact at these structures. Accordingly, cortactin-S298A significantly enhanced lamellipodia extension and directed cell migration. Our data thus unravel a previously unrecognized mechanism by which PKD controls cancer cell motility.  相似文献   

5.
Stathmin is an important regulator of microtubule polymerization and dynamics. When unphosphorylated it destabilizes microtubules in two ways, by reducing the microtubule polymer mass through sequestration of soluble tubulin into an assembly-incompetent T2S complex (two α:β tubulin dimers per molecule of stathmin), and by increasing the switching frequency (catastrophe frequency) from growth to shortening at plus and minus ends by binding directly to the microtubules. Phosphorylation of stathmin on one or more of its four serine residues (Ser16, Ser25, Ser38, and Ser63) reduces its microtubule-destabilizing activity. However, the effects of phosphorylation of the individual serine residues of stathmin on microtubule dynamic instability have not been investigated systematically. Here we analyzed the effects of stathmin singly phosphorylated at Ser16 or Ser63, and doubly phosphorylated at Ser25 and Ser38, on its ability to modulate microtubule dynamic instability at steady-state in vitro. Phosphorylation at either Ser16 or Ser63 strongly reduced or abolished the ability of stathmin to bind to and sequester soluble tubulin and its ability to act as a catastrophe factor by directly binding to the microtubules. In contrast, double phosphorylation of Ser25 and Ser38 did not affect the binding of stathmin to tubulin or microtubules or its catastrophe-promoting activity. Our results indicate that the effects of stathmin on dynamic instability are strongly but differently attenuated by phosphorylation at Ser16 and Ser63 and support the hypothesis that selective targeting by Ser16-specific or Ser63-specific kinases provides complimentary mechanisms for regulating microtubule function.Stathmin is an 18-kDa ubiquitously expressed microtubule-destabilizing phosphoprotein whose activity is modulated by phosphorylation of its four serine residues, Ser16, Ser25, Ser38, and Ser63 (17). Several classes of kinases have been identified that phosphorylate stathmin, including kinases associated with cell growth and differentiation such as members of the mitogen-activated protein kinase (MAPK)2 family, cAMP-dependent protein kinase (15, 811), and kinases associated with cell cycle regulation such as cyclin-dependent kinase 1 (3, 1214). Phosphorylation of stathmin is required for cell cycle progression through mitosis and for proper assembly/function of the mitotic spindle (3, 1316). Inhibition of stathmin phosphorylation produces strong mitotic phenotypes characterized by disassembly and disorganization of mitotic spindles and abnormal chromosome distributions (3, 1314).Stathmin is known to destabilize microtubules in two ways. One is by binding to soluble tubulin and forming a stable complex that cannot polymerize into microtubules, consisting of one molecule of stathmin and two molecules of tubulin (T2S complex) (1724). Addition of stathmin to microtubules in equilibrium with soluble tubulin results in sequestration of the tubulin and a reduction in the level of microtubule polymer (1718, 22, 2528). In addition to reducing the amount of assembled polymer, tubulin sequestration by stathmin has been shown to increase the switching frequency at microtubule plus ends from growth to shortening (called the catastrophe frequency) as the microtubules relax to a new steady state (17, 29). The second way is by binding directly to microtubules (2730). The direct binding of stathmin to microtubules increases the catastrophe frequency at both ends of the microtubules and considerably more strongly at minus ends than at plus ends (27). Consistent with its strong catastrophe-promoting activity at minus ends, stathmin increases the treadmilling rate of steady-state microtubules in vitro (27). These results have led to the suggestion that stathmin might be an important cellular regulator of minus-end microtubule dynamics (27).Phosphorylation of stathmin diminishes its ability to regulate microtubule polymerization (3, 14, 2526). Phosphorylation of Ser16 or Ser63 appears to be more critical than phosphorylation of Ser25 and Ser38 for the ability of stathmin to bind to soluble tubulin and to inhibit microtubule assembly in vitro (3, 25). Inhibition of stathmin phosphorylation induces defects in spindle assembly and organization (3, 14) suggesting that not only soluble tubulin-microtubule levels are regulated by phosphorylation of stathmin, but the dynamics of microtubules could also be regulated in a phosphorylation-dependent manner.It is not known how phosphorylation at any of the four serine residues of stathmin affects its ability to regulate microtubule dynamics and, specifically, its ability to increase the catastrophe frequency at plus and minus ends due to its direct interaction with microtubules. Thus, we determined the effects of stathmin individually phosphorylated at either Ser16 or Ser63 and doubly phosphorylated at both Ser25 and Ser38 on dynamic instability at plus and minus ends in vitro at microtubule polymer steady state and physiological pH (pH 7.2). We find that phosphorylation of Ser16 strongly reduces the direct catastrophe-promoting activity of stathmin at plus ends and abolishes it at minus ends, whereas phosphorylation of Ser63 abolishes the activity at both ends. The effects of phosphorylation of individual serines correlated well with stathmin''s reduced abilities to form stable T2S complexes, to inhibit microtubule polymerization, and to bind to microtubules. In contrast, double phosphorylation of Ser25 and Ser38 did not alter the ability of stathmin to modulate dynamic instability at the microtubule ends, its ability to form a stable T2S complex, or its ability to bind to microtubules. The data further support the hypotheses that phosphorylation of stathmin on either Ser16 or Ser63 plays a critical role in regulating microtubule polymerization and dynamics in cells.  相似文献   

6.
EB1 is key factor in the organization of the microtubule cytoskeleton by binding to the plus-ends of microtubules and serving as a platform for a number of interacting proteins (termed +TIPs) that control microtubule dynamics. Together with its direct binding partner adenomatous polyposis coli (APC), EB1 can stabilize microtubules. Here, we show that Amer2 (APC membrane recruitment 2), a previously identified membrane-associated APC-binding protein, is a direct interaction partner of EB1 and acts as regulator of microtubule stability together with EB1. Amer2 binds to EB1 via specific (S/T)xIP motifs and recruits it to the plasma membrane. Coexpression of Amer2 and EB1 generates stabilized microtubules at the plasma membrane, whereas knockdown of Amer2 leads to destabilization of microtubules. Knockdown of Amer2, APC, or EB1 reduces cell migration, and morpholino-mediated down-regulation of Xenopus Amer2 blocks convergent extension cell movements, suggesting that the Amer2-EB1-APC complex regulates cell migration by altering microtubule stability.  相似文献   

7.
An oncogenic form of RHAMM (receptor for hyaluronan-mediated motility, mouse, amino acids 163–794 termed RHAMMΔ163) is a cell surface hyaluronan receptor and mitotic spindle protein that is highly expressed in aggressive human cancers. Its regulation of mitotic spindle integrity is thought to contribute to tumor progression, but the molecular mechanisms underlying this function have not previously been defined. Here, we report that intracellular RHAMMΔ163 modifies the stability of interphase and mitotic spindle microtubules through ERK1/2 activity. RHAMM−/− mouse embryonic fibroblasts exhibit strongly acetylated interphase microtubules, multi-pole mitotic spindles, aberrant chromosome segregation, and inappropriate cytokinesis during mitosis. These defects are rescued by either expression of RHAMM or mutant active MEK1. Mutational analyses show that RHAMMΔ163 binds to α- and β-tubulin protein via a carboxyl-terminal leucine zipper, but in vitro analyses indicate this interaction does not directly contribute to tubulin polymerization/stability. Co-immunoprecipitation and pulldown assays reveal complexes of RHAMMΔ163, ERK1/2-MEK1, and α- and β-tubulin and demonstrate direct binding of RHAMMΔ163 to ERK1 via a D-site motif. In vitro kinase analyses, expression of mutant RHAMMΔ163 defective in ERK1 binding in mouse embryonic fibroblasts, and blocking MEK1 activity collectively confirm that the effect of RHAMMΔ163 on interphase and mitotic spindle microtubules is mediated by ERK1/2 activity. Our results suggest a model wherein intracellular RHAMMΔ163 functions as an adaptor protein to control microtubule polymerization during interphase and mitosis as a result of localizing ERK1/2-MEK1 complexes to their tubulin-associated substrates.  相似文献   

8.
Plus-end-tracking proteins (+TIPs) are localized at the fast-growing, or plus end, of microtubules, and link microtubule ends to cellular structures. One of the best studied +TIPs is EB1, which forms comet-like structures at the tips of growing microtubules. The molecular mechanisms by which EB1 recognizes and tracks growing microtubule ends are largely unknown. However, one clue is that EB1 can bind directly to a microtubule end in the absence of other proteins. Here we use an in vitro assay for dynamic microtubule growth with two-color total-internal-reflection-fluorescence imaging to investigate binding of mammalian EB1 to both stabilized and dynamic microtubules. We find that under conditions of microtubule growth, EB1 not only tip tracks, as previously shown, but also preferentially recognizes the GMPCPP microtubule lattice as opposed to the GDP lattice. The interaction of EB1 with the GMPCPP microtubule lattice depends on the E-hook of tubulin, as well as the amount of salt in solution. The ability to distinguish different nucleotide states of tubulin in microtubule lattice may contribute to the end-tracking mechanism of EB1.  相似文献   

9.
10.
Microtubule plus-end proteins CLIP-170 and EB1 dynamically track the tips of growing microtubules in vivo. Here we examine the association of these proteins with microtubules in vitro. CLIP-170 binds tubulin dimers and co-assembles into growing microtubules. EB1 binds tubulin dimers more weakly, so no co-assembly is observed. However, EB1 binds to CLIP-170, and forms a co-complex with CLIP-170 and tubulin that is recruited to growing microtubule plus ends. The interaction between CLIP-170 and EB1 is competitively inhibited by the related CAP-Gly protein p150Glued, which also localizes to microtubule plus ends in vivo. Based on these observations, we propose a model in which the formation of distinct plus-end complexes may differentially affect microtubule dynamics in vivo.  相似文献   

11.
Osteoclasts are large, multinucleated cells of the monocyte-macrophage lineage that generate specialized substrate adhesion complexes to facilitate their function as bone-degrading cells. The patterning and function of these actin-based complexes, podosomes and sealing zones, are regulated by the small GTPase Rho. Myosin IXB (Myo9b) is a unique actin-based motor protein that contains a RhoGAP domain, which, like other RhoGAPs, is inhibitory to Rho signaling. In this study, Myo9b is shown to be expressed in osteoclasts and act as a critical regulator of podosome patterning and osteoclast function. SiRNA-mediated knockdown of Myo9b results in increased activity of Rho but not Rac in osteoclasts. Knockdown in osteoclasts on glass results in altered podosome patterning and decreased motility, and this effect is reversed by addition of a Rho inhibitor. SiRNA-mediated suppression of Myo9b expression in osteoclasts on bone results in a dramatic loss of resorptive capacity even though sealing zones appear normal. This loss of resorption is also reversible with addition of a Rho inhibitor. Cells with diminished Myo9b levels display mislocalization and suppressed activation of Src, a tyrosine kinase with critical effects on osteoclast actin cytoskeletal rearrangement and function. In addition, siRNA-treated cells display poorly formed microtubule networks and a lack of tubulin acetylation, a marker of microtubule stability. However, short-term addition of TNFα to cells with suppressed Myo9b levels overcomes or circumvents these defects and causes increased sealing zone size and resorptive capacity. These results indicate that the RhoGAP activity of Myo9b plays a key role in regulating the actin-based structures necessary for osteoclast motility and resorption, and confirms that Myo9b can act as a motorized signaling molecule that links Rho signaling to the dynamic actin cytoskeleton.  相似文献   

12.
Mutations in cdk5rap2 are linked to autosomal recessive primary microcephaly, and attention has been paid to its function at centrosomes. In this report, we demonstrate that CDK5RAP2 localizes to microtubules and concentrates at the distal tips in addition to centrosomal localization. CDK5RAP2 interacts directly with EB1, a prototypic member of microtubule plus-end tracking proteins, and contains the basic and Ser-rich motif responsible for EB1 binding. The EB1-binding motif is conserved in the CDK5RAP2 sequences of chimpanzee, bovine, and dog but not in those of rat and mouse, suggesting a function gained during the evolution of mammals. The mutation of the Ile/Leu-Pro dipeptide within the motif abolishes EB1 interaction and plus-end attachment. In agreement with the mutational analysis, suppression of EB1 expression inhibits microtubule tip-tracking of CDK5RAP2. We have also found that the CDK5RAP2–EB1 complex regulates microtubule dynamics and stability. CDK5RAP2 depletion by RNA interference impacts the dynamic behaviors of microtubules. The CDK5RAP2–EB1 complex induces microtubule bundling and acetylation when expressed in cell cultures and stimulates microtubule assembly and bundle formation in vitro. Collectively, these results show that CDK5RAP2 targets growing microtubule tips in association with EB1 to regulate microtubule dynamics.  相似文献   

13.
Tau is a major member of the neuronal microtubule-associated proteins. It promotes tubulin assembly and stabilizes axonal microtubules. Previous studies have demonstrated that Tau forms cross-bridges between microtubules, with some particles located on cross-bridges, suggesting that some proteins interact with Tau and might be involved in regulating Tau-related microtubule dynamics. This study reports that PACSIN1 interacts with Tau in axon. PACSIN1 blockade results in impaired axonal elongation and a higher number of primary axonal branches in mouse dorsal root ganglia neurons, which is induced by increasing the binding ability of Tau to microtubules. In PACSIN1-blocked dorsal root ganglia neurons, a greater amount of Tau is inclined to accumulate in the central domain of growth cones, and it promotes the stability of the microtubule network. Taken together, these results suggest that PACSIN1 is an important Tau binding partner in regulating microtubule dynamics and forming axonal plasticity.  相似文献   

14.
Oral-facial-digital type I syndrome (OFDI) is a human X-linked dominant-male-lethal developmental disorder caused by mutations in the OFD1 gene. Similar to other inherited disorders associated to ciliary dysfunction OFD type I patients display neurological abnormalities. We characterized the neuronal phenotype that results from Ofd1 inactivation in early phases of mouse embryonic development and at post-natal stages. We determined that Ofd1 plays a crucial role in forebrain development, and in particular, in the control of dorso-ventral patterning and early corticogenesis. We observed abnormal activation of Sonic hedgehog (Shh), a major pathway modulating brain development. Ultrastructural studies demonstrated that early Ofd1 inactivation results in the absence of ciliary axonemes despite the presence of mature basal bodies that are correctly orientated and docked. Ofd1 inducible-mediated inactivation at birth does not affect ciliogenesis in the cortex, suggesting a developmental stage-dependent role for a basal body protein in ciliogenesis. Moreover, we showed defects in cytoskeletal organization and apical-basal polarity in Ofd1 mutant embryos, most likely due to lack of ciliary axonemes. Thus, the present study identifies Ofd1 as a developmental disease gene that is critical for forebrain development and ciliogenesis in embryonic life, and indicates that Ofd1 functions after docking and before elaboration of the axoneme in vivo.  相似文献   

15.
Signaling via the Pyk2-Src-Cbl complex downstream of integrins contributes to the assembly, organization, and dynamics of podosomes, which are the transient adhesion complexes of highly motile cells such as osteoclasts and dendritic cells. We previously demonstrated that the GTPase dynamin is associated with podosomes, regulates actin flux in podosomes, and promotes bone resorption by osteoclasts. We report here that dynamin associates with Pyk2, independent of dynamin''s GTPase activity, and reduces Pyk2 Y402 phosphorylation in a GTPase-dependent manner, leading to decreased Src binding to Pyk2. Overexpressing dynamin decreased the macrophage colony-stimulating factor- and adhesion-induced phosphorylation of Pyk2 in osteoclastlike cells, suggesting that dynamin is likely to regulate Src-Pyk2 binding downstream of integrins and growth factor receptors with important cellular consequences. Furthermore, catalytically active Src promotes dynamin-Pyk2 association, and mutating specific Src-phosphorylated tyrosine residues in dynamin blunts the dynamin-induced decrease in Pyk2 phosphorylation. Thus, since Src binds to Pyk2 through its interaction with phospho-Y402, our results suggest that Src activates a negative-feedback loop downstream of integrin engagement and other stimuli by promoting both the binding of dynamin to Pyk2-containing complexes and the dynamin-dependent decrease in Pyk2 Y402 phosphorylation, ultimately leading to the dissociation of Src from Pyk2.Podosomes are specialized transient actin-containing adhesion structures (11, 14, 37, 60) that are found in highly motile cells, such as osteoclasts, macrophages, dendritic cells, transformed metastatic cells, and v-src-transformed cells (37, 43), where they are thought to play important roles in cellular migration and invasion (34). In resorbing osteoclasts on bone, podosomes are concentrated within the sealing zone, a beltlike actin-rich structure that is important for adhesion and which delineates the resorptive region of the cell known as the ruffled border. Unlike focal adhesions, which are relatively stable structures (11, 60), the assembly and disassembly of podosomes occurs within minutes (t1/2 = 2 to 4 min) and involves the recruitment and activation of integrins, signaling proteins and scaffolding proteins (11, 14, 35, 47, 60). However, the mechanisms of action of key signaling proteins involved in podosome assembly and disassembly are only partially understood.The focal adhesion kinase Pyk2 has been linked to the proliferation, migration, and activity of a variety of mesenchymal, epithelial, and hematopoietic cell types. Several groups, including our own, have reported the importance of Pyk2 in podosome belt organization, cell spreading, and bone-resorbing activity in osteoclasts (18, 26, 31, 40, 65, 66). Pyk2 is recruited to activated β2 and β3 integrins (9, 20) at adhesion sites and is autophosphorylated at Y402 (17, 47, 50) via an intermolecular trans-acting mechanism (46). Although Pyk2 is partially activated by integrin-induced Ca2+ signaling (20, 50), the induction of Pyk2''s full catalytic activity requires the binding of Src via its SH2 domain to autophosphorylated Pyk2 Y402 and the subsequent phosphorylation of Pyk2 at functionally distinct sites, including Y579, Y580, and Y881 (17, 31, 46). The binding of Src to phosphorylated Pyk2, which leads to the formation of a multiprotein signaling complex at adhesion sites (17, 40, 50), is critical for Pyk2 activity, as demonstrated by the fact that Pyk2 phosphorylation and activity are significantly reduced in osteoclasts derived from Src−/− mice (17, 40). Src−/− osteoclasts also exhibit decreased motility (50) and decreased bone-resorbing activity (40, 54, 59), and we recently demonstrated that Src promotes both podosome formation and disassembly, as well as actin flux into existing podosomes and the organization of podosomes into a peripheral belt in osteoclasts (15).We have also demonstrated that the GTP-hydrolyzing protein dynamin-2, which is ubiquitously expressed and well known for its role in endocytosis (53), regulates actin remodeling in the podosomes of osteoclasts and Rous sarcoma virus-transformed baby hamster kidney cells (43). In addition, a dynamin-2 mutant that binds GTP with reduced affinity (dynK44A) (12) decreased the flux of actin into podosomes (43) and disrupted podosome belt formation in osteoclasts, thereby affecting osteoclast migration and bone-resorbing activity (8). The dynamin proteins, of which there are three homologous isoforms (3), contain several protein domains: a GTP-hydrolyzing domain (GTPase), a plextrin homology domain that mediates binding to phosphoinositides, a GTPase effector domain (GED), and a C-terminal proline-rich domain (PRD) (38, 45, 55) through which dynamin binds a number of functionally diverse SH3-containing molecules, such as Src, cortactin, Grb2, and N-Wasp (1, 7, 27, 39, 58). We previously reported that dynamin-2 partially colocalizes and associates with the E3-ubiquitin ligase Cbl within the podosome belt/sealing zone of osteoclasts, as well as in SYF cells, which lack the Src family kinases Src, Yes, and Fyn, and in HEK 293 cells that stably express the vitronectin receptor (293VnR) (8). Protein complexes containing dynamin-2 and Cbl, which are both substrates of Src (1, 2, 23, 50, 56), were disrupted in the presence of activated Src and stabilized in the absence of Src (8), demonstrating a key role of Src in regulating the formation of signaling complexes in osteoclasts downstream of integrins.In the present study, we sought to determine whether dynamin, which regulates podosome actin dynamics and bone resorption in osteoclasts, also associates with Pyk2 and/or regulates Pyk2''s activities in osteoclasts. We report here that dynamin associates with Pyk2 and promotes the dephosphorylation of Pyk2 Y402 and that catalytically active Src promotes both dynamin''s association with Pyk2 and the dynamin-induced dephosphorylation of Pyk2 Y402, resulting, in turn, in the decreased binding of Src to Pyk2. Thus, we propose that dynamin regulates podosome dynamics and osteoclast bone-resorbing activity by promoting the disassembly of the Pyk2-Src-Cbl complex that is formed in osteoclasts downstream of β3 integrin activation.  相似文献   

16.

Background

Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models.

Methodology/Principal Findings

Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis.

Conclusion/Significance

Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast differentiation. Therefore, targeting the autotaxin/LPA track emerges as a potential new therapeutic approach to improve the outcome of patients with bone metastases.  相似文献   

17.
《Current biology : CB》2020,30(10):1905-1915.e4
  1. Download : Download high-res image (203KB)
  2. Download : Download full-size image
  相似文献   

18.
We have discovered several novel features exhibited by microtubules (MTs) in migrating newt lung epithelial cells by time-lapse imaging of fluorescently labeled, microinjected tubulin. These cells exhibit leading edge ruffling and retrograde flow in the lamella and lamellipodia. The plus ends of lamella MTs persist in growth perpendicular to the leading edge until they reach the base of the lamellipodium, where they oscillate between short phases of growth and shortening. Occasionally “pioneering” MTs grow into the lamellipodium, where microtubule bending and reorientation parallel to the leading edge is associated with retrograde flow. MTs parallel to the leading edge exhibit significantly different dynamics from MTs perpendicular to the cell edge. Both parallel MTs and photoactivated fluorescent marks on perpendicular MTs move rearward at the 0.4 μm/min rate of retrograde flow in the lamella. MT rearward transport persists when MT dynamic instability is inhibited by 100-nM nocodazole but is blocked by inhibition of actomyosin by cytochalasin D or 2,3-butanedione–2-monoxime. Rearward flow appears to cause MT buckling and breaking in the lamella. 80% of free minus ends produced by breakage are stable; the others shorten and pause, leading to MT treadmilling. Free minus ends of unknown origin also depolymerize into the field of view at the lamella. Analysis of MT dynamics at the centrosome shows that these minus ends do not arise by centrosomal ejection and that ~80% of the MTs in the lamella are not centrosome bound. We propose that actomyosin-based retrograde flow of MTs causes MT breakage, forming quasi-stable noncentrosomal MTs whose turnover is regulated primarily at their minus ends.  相似文献   

19.
The current two-state GTP cap model of microtubule dynamic instability proposes that a terminal crown of GTP-tubulin stabilizes the microtubule lattice and promotes elongation while loss of this GTP-tubulin cap converts the microtubule end to shortening. However, when this model was directly tested by using a UV microbeam to sever axoneme-nucleated microtubules and thereby remove the microtubule's GTP cap, severed plus ends rapidly shortened, but severed minus ends immediately resumed elongation (Walker, R.A., S. Inoué, and E.D. Salmon. 1989. J. Cell Biol. 108: 931–937).

To determine if these previous results were dependent on the use of axonemes as seeds or were due to UV damage, or if they instead indicate an intermediate state in cap dynamics, we performed UV cutting of self-assembled microtubules and mechanical cutting of axoneme-nucleated microtubules. These independent methods yielded results consistent with the original work: a significant percentage of severed minus ends are stable after cutting. In additional experiments, we found that the stability of both severed plus and minus ends could be increased by increasing the free tubulin concentration, the solution GTP concentration, or by assembling microtubules with guanylyl-(α,β)-methylene-diphosphonate (GMPCPP).

Our results show that stability of severed ends, particularly minus ends, is not an artifact, but instead reveals the existence of a metastable kinetic intermediate state between the elongation and shortening states of dynamic instability. The kinetic properties of this intermediate state differ between plus and minus ends. We propose a three-state conformational cap model of dynamic instability, which has three structural states and four transition rate constants, and which uses the asymmetry of the tubulin heterodimer to explain many of the differences in dynamic instability at plus and minus ends.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号