首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Acetone–butanol–ethanol (ABE) fermentation with a hyper‐butanol producing Clostridium acetobutylicum JB200 was studied for its potential to produce a high titer of butanol that can be readily recovered with gas stripping. In batch fermentation without gas stripping, a final butanol concentration of 19.1 g/L was produced from 86.4 g/L glucose consumed in 78 h, and butanol productivity and yield were 0.24 g/L h and 0.21 g/g, respectively. In contrast, when gas stripping was applied intermittently in fed‐batch fermentation, 172 g/L ABE (113.3 g/L butanol, 49.2 g/L acetone, 9.7 g/L ethanol) were produced from 474.9 g/L glucose in six feeding cycles over 326 h. The overall productivity and yield were 0.53 g/L h and 0.36 g/g for ABE and 0.35 g/L h and 0.24 g/g for butanol, respectively. The higher productivity was attributed to the reduced butanol concentration in the fermentation broth by gas stripping that alleviated butanol inhibition, whereas the increased butanol yield could be attributed to the reduced acids accumulation as most acids produced in acidogenesis were reassimilated by cells for ABE production. The intermittent gas stripping produced a highly concentrated condensate containing 195.9 g/L ABE or 150.5 g/L butanol that far exceeded butanol solubility in water. After liquid–liquid demixing or phase separation, a final product containing ~610 g/L butanol, ~40 g/L acetone, ~10 g/L ethanol, and no acids was obtained. Compared to conventional ABE fermentation, the fed‐batch fermentation with intermittent gas stripping has the potential to reduce at least 90% of energy consumption and water usage in n‐butanol production from glucose. Biotechnol. Bioeng. 2012; 109: 2746–2756. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
We examined the effect of gas-stripping on the in situ removal of acetone, butanol, and ethanol (ABE) from batch reactor fermentation broth. The mutant strain (Clostridium beijerinckii BA101) was not affected adversely by gas stripping. The presence of cells in the fermentation broth affected the selectivities of ABE. A considerable improvement in the productivity and yield was recorded in this work in comparison with the non-integrated process. In an integrated process of ABE fermentation-recovery using C. beijerinckii BA101, ABE productivities and yield were improved up to 200 and 118%, respectively, as compared to control batch fermentation data. In a batch reactor C. beijerinckii BA101 utilized 45.4 g glucose l–1 and produced 17.7 g total ABE l–1, while in the integrated process it utilized 161.7 g glucose l–1 and produced total ABE of 75.9 g l–1. In the integrated process, acids were completely converted to solvents when compared to the non-integrated process (batch fermentation) which contained residual acids at the end of fermentation. In situ removal of ABE by gas stripping has been reported to be one of the most important techniques of solvent removal. During these studies we were able to maintain the ABE concentration in the fermentation broth below toxic levels.  相似文献   

3.
Acetone butanol ethanol (ABE) was produced in an integrated continuous one-stage fermentation and gas stripping product recovery system using Clostridium beijerinckii BA101 and fermentation gases (CO2 and H2). In this system, the bioreactor was fed with a concentrated sugar solution (250–500 g L?1 glucose). The bioreactor was bled semi-continuously to avoid accumulation of inhibitory chemicals and products. The continuous system was operated for 504 h (21 days) after which the fermentation was intentionally terminated. The bioreactor produced 461.3 g ABE from 1,125.0 g total sugar in 1 L culture volume as compared to a control batch process in which 18.4 g ABE was produced from 47.3 g sugar. These results demonstrate that ABE fermentation can be operated in an integrated continuous one-stage fermentation and product recovery system for a long period of time, if butanol and other microbial metabolites in the bioreactor are kept below threshold of toxicity.  相似文献   

4.
A potential industrial substrate (liquefied corn starch; LCS) has been employed for successful acetone butanol ethanol (ABE) production. Fermentation of LCS (60 g l−1) in a batch process resulted in the production of 18.4 g l−1 ABE, comparable to glucose: yeast extract based medium (control experiment, 18.6 g l−1 ABE). A batch fermentation of LCS integrated with product recovery resulted in 92% utilization of sugars present in the feed. When ABE was recovered by gas stripping (to relieve inhibition) from the fed-batch reactor fed with saccharified liquefied cornstarch (SLCS), 81.3 g l−1 ABE was produced compared to 18.6 g l−1 (control). In this integrated system, 225.8 g l−1 SLCS sugar (487 % of control) was consumed. In the absence of product removal, it is not possible for C. beijerinckii BA101 to utilize more than 46 g l−1 glucose. A combination of fermentation of this novel substrate (LCS) to butanol together with product recovery by gas stripping may economically benefit this fermentation. Mention of trade names of commercial products in this article/publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

5.
Acetone, butanol, and ethanol (ABE) were produced from corn fiber arabinoxylan (CFAX) and CFAX sugars (glucose, xylose, galactose, and arabinose) using Clostridium acetobutylicum P260. In mixed sugar (glucose, xylose, galactose, and arabinose) fermentation, the culture preferred glucose and arabinose over galactose and xylose. Under the experimental conditions, CFAX (60 g/L) was not fermented until either 5 g/L xylose or glucose plus xylanase enzyme were added to support initial growth and fermentation. In this system, C. acetobutylicum produced 9.60 g/L ABE from CFAX and xylose. This experiment resulted in a yield and productivity of 0.41 and 0.20 g/L x h, respectively. In the integrated hydrolysis, fermentation, and recovery process, 60 g/L CFAX and 5 g/L xylose produced 24.67 g/L ABE and resulted in a higher yield (0.44) and a higher productivity (0.47 g/L x h). CFAX was hydrolyzed by xylan-hydrolyzing enzymes, and ABE were recovered by gas stripping. This investigation demonstrated that integration of hydrolysis of CFAX, fermentation to ABE, and recovery of ABE in a single system is an economically attractive process. It is suggested that the culture be further developed to hydrolyze CFAX and utilize all xylan sugars simultaneously. This would further increase productivity of the reactor.  相似文献   

6.
Gu  Chunkai  Wang  Genyu  Mai  Shuai  Wu  Pengfei  Wu  Jianrong  Wang  Gehua  Liu  Hongjuan  Zhang  Jianan 《Applied microbiology and biotechnology》2017,101(5):2189-2199

Butanol is an ideal renewable biofuel which possesses superior fuel properties. Previously, butanol-producing symbiotic system TSH06 was isolated in our lab, with microoxygen tolerance ability. To boost butanol yield for large-scale industrial production, TSH06 was used as parental strain and subjected to atmospheric and room temperature plasma (ARTP) and four rounds of genome shuffling (GS). ARTP mutant and GS strain were co-cultured with facultative anaerobic Bacillus cereus TSH2 to form a symbiotic system with microoxygen tolerance, which was then subjected to fermentation. Relative messenger RNA (mRNA) level of key enzyme gene was measured by real-time PCR. The highest butanol titer of TS4-30 reached 15.63 g/L, which was 34% higher than TSH06 (12.19 g/L). Compared with parental strain, mRNA of acid-forming gene in TS4-30 decreased in acidogenesis phase, while solvent-forming gene increased in solventogenesis phase. This gene expression pattern was consistent with high butanol yield and low acid level in TS4-30. In summary, symbiotic system TS4-30 was obtained with butanol titer improvement and microoxygen tolerance.

  相似文献   

7.
The effect of factors such as gas recycle rate, bubble size, presence of acetone, and ethanol in the solution/broth were investigated in order to remove butanol from model solution or fermentation broth (also called acetone butanol ethanol or ABE or solvents). Butanol (8 g L–1, model solution, Fig. 2) stripping rate was found to be proportional to the gas recycle rate. In the bubble size range attempted (<0.5 and 0.5–5.0 mm), the bubble size did not have any effect on butanol removal rate (Fig. 3, model solution). In Clostridium beijerinckii fermentation, ABE productivity was reduced from 0.47 g L–1 h–1 to 0.25 g L–1 h–1 when smaller (<0.5 mm) bubble size was used to remove ABE (Fig. 4, results reported as butanol/ABE concentration). The productivity was reduced as a result of addition of an excessive amount of antifoam used to inhibit the production of foam caused by the smaller bubbles. This suggested that the fermentation was negatively affected by antifoam.Mention of trade names of commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

8.
Simultaneous acetone butanol ethanol (ABE) fermentation by Clostridium beijerinckii P260 and in situ product recovery was investigated using a vacuum process operated in two modes: continuous and intermittent. Integrated batch fermentations and ABE recovery were conducted at 37 °C using a 14-L bioreactor (7.0 L fermentation volume) containing initial substrate (glucose) concentration of 60 g/L. The bioreactor was connected in series with a condensation system and vacuum pump. Vacuum was applied continuously or intermittently with 1.5 h vacuum sessions separated by 4, 6, and 8 h intervals. A control ABE fermentation experiment was characterized by incomplete glucose utilization due to butanol toxicity to C. beijerinckii P260, while fermentation coupled with in situ recovery by both continuous and intermittent vacuum modes resulted in complete utilization of glucose, greater productivity, improved cell growth, and concentrated recovered ABE stream. These results demonstrate that vacuum technology can be applied to integrated ABE fermentation and recovery even though the boiling point of butanol is greater than that of water.  相似文献   

9.
This article discusses the separation of butanol from aqueous solutions and/or fermentation broth by adsorption. Butanol fermentation is also known as acetone butanol ethanol (ABE) or solvent fermentation. Adsorbents such as silicalite, resins (XAD-2, XAD-4, XAD-7, XAD-8, XAD-16), bone charcoal, activated charcoal, bonopore, and polyvinylpyridine have been studied. Use of silicalite appears to be the more attractive as it can be used to concentrate butanol from dilute solutions (5 to 790–810 g L−1) and results in complete desorption of butanol (or ABE). In addition, silicalite can be regenerated by heat treatment. The energy requirement for butanol recovery by adsorption–desorption processes has been calculated to be 1,948 kcal kg−1 butanol as compared to 5,789 kcal kg−1 butanol by steam stripping distillation. Other techniques such as gas stripping and pervaporation require 5,220 and 3,295 kcal kg−1 butanol, respectively. Mention of trade names of commercial products in this article/publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

10.
In situ butanol recovery fermentation has been intensively studied as an effective alternative to conventional butanol production, which is limited due to the cellular toxicity of butanol. However, the low biocompatibility of adsorbents often leads to failure of in situ recovery fermentations. In this study, Clostridium beijerinckii NCIMB 8052 was cultured in flasks without shaking and in situ recovery fermentation was performed by using an adsorbent L493. The amounts of acetone, butanol, and ethanol (ABE) increased by 34.4 % in the presence of the adsorbent. In contrast, cell growth and production of organic acids and ABE were retarded in the 7-L batch fermentations with in situ butanol recovery. Cell damage occurred in the fermentor upon agitation in the presence of the adsorbent, unlike in static flask cultures with in situ recovery. Ex situ recovery fermentation using circulation of fermentation broth after mid-exponential phase of cell growth was developed to avoid adsorbent-cell incompatibility. No apparent cell damage was observed and 25.7 g/L of ABE was produced from 86.2 g/L glucose in the fed-batch mode using 7 L fermentors. Thus, ex situ recovery fermentation with C. beijerinckii is effective for enhancing butanol fermentation.  相似文献   

11.
Butanol-producing microorganisms are all obligate anaerobes. In this study, a unique symbiotic system TSH06 was isolated to be capable of producing butanol under non-anaerobic condition. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S ribosomal RNA (rRNA) revealed that two strains coexist in TSH06. The two strains were identical to Clostridium acetobutylicum and Bacillus cereus, respectively. They were isolated individually and named as C. acetobutylicum TSH1 and B. cereus TSH2. C. acetobutylicum TSH1 is a butanol-producing, obligate anaerobic strain. Facultative anaerobic B. cereus TSH2 did not possess the ability of butanol production; however, it offered C. acetobutylicum TSH1 the viability under non-anaerobic condition. Moreover, B. cereus TSH2 enhanced butanol yield and speed of fermentation. TSH06 produced 12.97 g/L butanol and 15.39 g/L total solvent under non-anaerobic condition, which is 25 and 24 %, respectively, higher than those of C. acetobutylicum TSH1. In addition, TSH06 produced butanol faster under non-anaerobic condition than under anaerobic condition. Butanol accounted for more than 80 % of total solvent, which is higher than the known report. TSH06 was stable during passage. In all, TSH06 is a promising candidate for industrialisation of biobutanol with high yield, high butanol proportion, easy-handling and time-saving system. These results demonstrated the potential advantage of symbiosis. This study also provides a promising strategy for butanol fermentation.  相似文献   

12.
Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H2 and CO2 as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l–1 and 60 g l–1, respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l–1 and produced 17.6 g total solvents l–1 (yield 0.39 g g–1, productivity 0.29 g l–1 h–1). Using the integrated fermentation-gas stripping product-recovery system with CO2 and H2 as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l–1) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g–1 and 1.16 g l–1 h–1, respectively.  相似文献   

13.
PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning.  相似文献   

14.
Wheat bran, a by-product of the wheat milling industry, consists mainly of hemicellulose, starch and protein. In this study, the hydrolysate of wheat bran pretreated with dilute sulfuric acid was used as a substrate to produce ABE (acetone, butanol and ethanol) using Clostridium beijerinckii ATCC 55025. The wheat bran hydrolysate contained 53.1 g/l total reducing sugars, including 21.3 g/l of glucose, 17.4 g/l of xylose and 10.6 g/l of arabinose. C. beijerinckii ATCC 55025 can utilize hexose and pentose simultaneously in the hydrolysate to produce ABE. After 72 h of fermentation, the total ABE in the system was 11.8 g/l, of which acetone, butanol and ethanol were 2.2, 8.8 and 0.8 g/l, respectively. The fermentation resulted in an ABE yield of 0.32 and productivity of 0.16 g l−1 h−1. This study suggests that wheat bran can be a potential renewable resource for ABE fermentation.  相似文献   

15.
The economics of Acetone-butanol-ethanol (ABE) fermentation is greatly affected by raw materials, and the use of readily available starchy materials from marginal farming lands could be a viable option for reducing costs. Kudzu, a rapidly growing perennial leguminous vine, has been planted on marginal farming land and widely distributed in Asia and America. This study investigated ABE fermentation by C. acetobutylicum ATCC 824 using kudzu roots and isoflavone extraction from kudzu fermentation residue (KFR). The kudzu roots could be used as a sole substrate for ABE fermentation without nutritional supplements. Batch culture containing 140 g kudzu/L produced 17.99 ± 1.08 g/L solvent (ABE), including 11.20 ± 0.79 g/L butanol, 5.54 ± 0.20 g/L acetone, and 1.15 ± 0.09 g/L ethanol, with a productivity of 0.19 g/(L/h) and a yield of 0.33 g solvent/g sugar after 96 h of fermentation. Isoflavone yield extracted from KFR was 1.90/100 g KFR, approximately 48% higher compared with that extracted from raw kudzu. A kinetic analysis of the extraction process showed that both the isoflavone yield and the extraction rate obtained from KFR were higher than the corresponding values obtained from raw kudzu. These results indicate that kudzu may provide a new potential raw material for ABE production and the process of ABE fermentation integrated with isoflavone extraction may provide a new way to reduce fermentable substrate costs.  相似文献   

16.
《Process Biochemistry》2014,49(8):1238-1244
PH is an essential factor for acetone/butanol/ethanol (ABE) production using Clostridium spp. In this study, batch fermentations by Clostridium beijerinckii IB4 at various pH values ranging from 4.9 to 6.0 were examined. At pH 5.5, the ABE production was dominant and maximum ABE concentration of 24.6 g/L (15.7 g/L of butanol, 8.63 g/L of acetone and 0.32 g/L of ethanol) was obtained with the consumption of 60 g/L of glucose within 36 h. However, in the control (without pH control), an ABE concentration of 14.1 g/L (11.0 g/L of butanol, 3.01 g/L of acetone and 0.16 g/L of ethanol) was achieved with the consumption of 41 g/L of glucose within 40 h. A considerable improvement in the productivity of up to 93.8% was recorded at controlled pH in comparison to the process without pH control. To better understand the influence of pH on butanol production, the reducing power capability and NADH-dependent butanol dehydrogenase activity were investigated, both of which were significantly improved at pH 5.5. Thus, the pH control technique is a convenient and efficient method for high-intensity ABE production.  相似文献   

17.
Butanol and butyric acid produced from acetone-butanol-ethanol (ABE) fermentation can be used to produce butyl butyrate, an important fragrance ester. However, low levels of butanol and butyric acid need to be purified from culture media first with energy-intensive distillation processes. In this study, a triphasic (organic/aqueous/fluorous) system is developed to esterify butanol and butyric acid in spent culture media into butyl butyrate directly without purification. The produced butyl butyrate forms a distinct organic phase floating on top and can then be separated easily. In a model system containing 37.1 g/L of butanol and 44.1 g/L of butyric acid, 57% of the butanol is converted to butyl butyrate after 8 h of esterification. With multiple cycles of esterification and product removal, butanol conversion can be further increased to 86%. When spent culture medium containing 7.12 g/L of butanol and 4.81 g/L of butyric acid is used for esterification, 38% of butanol (0.36 mmol) is consumed and 0.33 mmol of butyl butyrate is produced. However, when ABE fermentation and esterification are carried out simultaneously, only 0.042 mmol of butyl butyrate is produced, probably due to the incompatible pH requirements for cell growth (pH 5–7) and esterification (pH 2–3).  相似文献   

18.
Clostridium pasteurianum can utilize glycerol as the sole carbon source for the production of butanol and 1,3-propanediol. Crude glycerol derived from biodiesel production has been shown to be toxic to the organism even in low concentrations. By examination of different pretreatments we found that storage combined with activated stone carbon addition facilitated the utilization of crude glycerol. A pH-controlled reactor with in situ removal of butanol by gas stripping was used to evaluate the performance. The fermentation pattern on pretreated crude glycerol was quite similar to that on technical grade glycerol. C. pasteurianum was able to utilize 111 g/l crude glycerol. The average consumption rate was 2.49 g/l/h and maximum consumption rate was 4.08 g/l/h. At the maximal glycerol consumption rate butanol was produced at 1.3 g/l/h. These rates are higher than those previously reported for fermentations on technical grade glycerol by the same strain. A process including pretreatment and subsequent fermentation of the crude glycerol could be usable for industrial production of butanol by C. pasteurianum.  相似文献   

19.
本研究以玉米秸秆水解液为原料,通过萃取发酵技术生产燃料丁醇,以提高丁醇产量,降低生产成本。通过对萃取剂的筛选与条件优化,确定纤维丁醇发酵的萃取剂为油醇,添加时间为发酵0 h,添加比例为1:1 (V/V)。该条件下发酵32 g/L糖浓度的玉米秸秆水解液,丁醇和总溶剂产量分别为3.28 g/L和4.72 g/L,比对照分别提高958.1%和742.9%。以D301树脂脱毒后5%总糖浓度的玉米秸秆水解液进行丁醇萃取发酵,丁醇和总溶剂产量分别达到10.34 g/L和14.72 g/L,发酵得率为0.31 g/g,与混合糖发酵结果相当。研究结果表明萃取发酵技术能够显著提高原料的利用率和丁醇产量,为纤维丁醇工业化生产提供了技术支撑。  相似文献   

20.
Fermentation of sulfuric acid treated corn fiber hydrolysate (SACFH) inhibited cell growth and butanol production (1.7 ± 0.2 g/L acetone butanol ethanol or ABE) by Clostridium beijerinckii BA101. Treatment of SACFH with XAD-4 resin removed some of the inhibitors resulting in the production of 9.3 ± 0.5 g/L ABE and a yield of 0.39 ± 0.015. Fermentation of enzyme treated corn fiber hydrolysate (ETCFH) did not reveal any cell inhibition and resulted in the production of 8.6 ± 1.0 g/L ABE and used 24.6 g/L total sugars. ABE production from fermentation of 25 g/L glucose and 25 g/L xylose was 9.9 ± 0.4 and 9.6 ± 0.4 g/L, respectively, suggesting that the culture was able to utilize xylose as efficiently as glucose. Production of only 9.3 ± 0.5 g/L ABE (compared with 17.7 g/L ABE from fermentation of 55 g/L glucose-control) from the XAD-4 treated SACFH suggested that some fermentation inhibitors may still be present following treatment. It is suggested that inhibitory components be completely removed from the SACFH prior to fermentation with C. beijerinckii BA101. In our fermentations, an ABE yield ranging from 0.35 to 0.39 was obtained, which is higher than reported by the other investigators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号