首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA vaccinations are able to induce strong cellular immune responses in mice and confer protection against infectious agents. However, DNA vaccination of large animals appears to be less effective and requires repeated injections of large amounts of plasmid DNA. Enhancement of the efficiency of DNA vaccines may be achieved by coapplication of cytokine-expressing plasmids. Here we investigated, with woodchucks, whether coadministration of an expression plasmid for woodchuck gamma interferon (IFN-gamma), pWIFN-gamma, can improve DNA vaccination with woodchuck hepatitis virus core antigen (WHcAg). Animals were immunized with pWHcIm (a plasmid expressing WHcAg) alone or with a combination of pWHcIm and pWIFN-gamma using a gene gun. Six weeks postimmunization, all animals were challenged with 10(5) genome equivalents of woodchuck hepatitis virus (WHV). The antibody and lymphoproliferative immune responses to WHV proteins were determined after immunization and after challenge. Vaccination with pWHcIm and pWIFN-gamma led to a pronounced lymphoproliferative response to WHcAg and protected woodchucks against subsequent virus challenge. Two of three animals vaccinated with pWHcIm alone did not show a detectable lymphoproliferative response to WHcAg. A low-level WHV infection occurred in these woodchucks after challenge, as WHV DNA was detectable in the serum by PCR. None of the pWHcIm-vaccinated animals showed an anti-WHcAg antibody response after DNA vaccination or an anamnestic response after virus challenge. Our results indicate that coadministration of the WIFN-gamma gene with pWHcIm enhanced the specific cellular immune response and improved the protective efficacy of WHV-specific DNA vaccines.  相似文献   

2.
DNA vaccination can induce humoral and cellular immune response to viral antigens and confer protection to virus infection. In woodchucks, we tested the protective efficacy of immune response to woodchuck hepatitis core antigen (WHcAg) and surface antigen (WHsAg) of woodchuck hepatitis virus (WHV) elicited by DNA-based vaccination. Plasmids pWHcIm and pWHsIm containing WHV c- or pre-s2/s genes expressed WHcAg and WHsAg in transient transfection assays. Pilot experiments in mice revealed that a single intramuscular injection of 100 μg of plasmid pWHcIm DNA induced an anti-WHcAg titer over 1:300 that was enhanced by boost injections. However, two injections of 100 μg of pWHcIm did not induce detectable anti-WHcAg in woodchucks. With an increase in the dose to 1 mg of pWHcIm per injection, transient anti-WHcAg response and WHcAg-specific proliferation of peripheral mononuclear blood cells (PMBCs) appeared in woodchucks after repeated immunizations. Four woodchucks vaccinated with pWHcIm were challenged with 104 or 105 of the WHV 50% infective dose. They remained negative for markers of WHV replication (WHV DNA and WHsAg) in peripheral blood and developed anti-WHs in week 5 after challenge. In contrast, woodchucks not immunized or immunized with the control vector pcDNA3 developed acute WHV infection. Two woodchucks immunized with 1 mg of pWHsIm developed WHsAg-specific proliferative response of PBMCs but no measurable anti-WHsAg response. A rapid anti-WHsAg response developed during week 2 after virus challenge. Neither woodchuck developed any signs of WHV infection. These data indicate that DNA-based vaccination with WHcAg and WHsAg can elicit immunity to WHV infection.  相似文献   

3.
Woodchucks infected with woodchuck hepatitis virus (WHV) are an excellent model for studying acute, self-limited and chronic hepadnaviral infections. Defects in the immunological response leading to chronicity are still unknown. Specific T-helper cell responses to WHV core and surface antigens (WHcAg and WHsAg, respectively) are associated with acute resolving infection; however, they are undetectable in chronic infection. Up to now, cytotoxic T-lymphocyte (CTL) responses could not be determined in the woodchuck. In the present study, we detected virus-specific CTL responses by a CD107a degranulation assay. The splenocytes of woodchucks in the postacute phase of WHV infection (18 months postinfection) were isolated and stimulated with overlapping peptides covering the whole WHcAg. After 6 days, the cells were restimulated and stained for CD3 and CD107a. One peptide (c96-110) turned out to be accountable for T-cell expansion and CD107a staining. Later, we applied the optimized degranulation assay to study the kinetics of the T-cell response in acute WHV infection. We found a vigorous T-cell response against peptide c96-110 with peripheral blood cells beginning at the peak of viral load (week 5) and lasting up to 15 weeks postinfection. In contrast, there was no T-cell response against peptide c96-110 detectable in chronically WHV-infected animals. Thus, with this newly established flow cytometric degranulation assay, we detected for the first time virus-specific CTLs and determined one immunodominant epitope of WHcAg in the woodchuck.  相似文献   

4.
A potent therapeutic T-cell vaccine may be an alternative treatment of chronic hepatitis B virus (HBV) infection. Previously, we developed a DNA prime-adenovirus (AdV) boost vaccination protocol that could elicit strong and specific CD8+ T-cell responses to woodchuck hepatitis virus (WHV) core antigen (WHcAg) in mice. In the present study, we first examined whether this new prime-boost immunization could induce WHcAg-specific T-cell responses and effectively control WHV replication in the WHV-transgenic mouse model. Secondly, we evaluated the therapeutic effect of this new vaccination strategy in chronically WHV-infected woodchucks in combination with a potent antiviral treatment. Immunization of WHV-transgenic mice by DNA prime-AdV boost regimen elicited potent and functional WHcAg-specific CD8+ T-cell response that consequently resulted in the reduction of the WHV load below the detection limit in more than 70% of animals. The combination therapy of entecavir (ETV) treatment and DNA prime-AdV boost immunization in chronic WHV carriers resulted in WHsAg- and WHcAg-specific CD4+ and CD8+ T-cell responses, which were not detectable in ETV-only treated controls. Woodchucks receiving the combination therapy showed a prolonged suppression of WHV replication and lower WHsAg levels compared to controls. Moreover, two of four immunized carriers remained WHV negative after the end of ETV treatment and developed anti-WHs antibodies. These results demonstrate that the combined antiviral and vaccination approach efficiently elicited sustained immunological control of chronic hepadnaviral infection in woodchucks and may be a new promising therapeutic strategy in patients.  相似文献   

5.
Woodchuck hepatitis virus (WHV) and hepatitis B virus (HBV) are closely similar with respect to genomic organization, host antiviral responses, and pathobiology of the infection. T-cell immunity against viral nucleocapsid (HBcAg or WHcAg) has been shown to play a critical role in viral clearance and protection against infection. Here we show that vaccination of healthy woodchucks by gene gun bombardment with a plasmid coding for WHcAg (pCw) stimulates proliferation of WHcAg-specific T cells but that these cells do not produce significant levels of gamma interferon (IFN-gamma) upon antigen stimulation. In addition, animals vaccinated with pCw alone were not protected against WHV inoculation. In order to induce a Th1 cytokine response, another group of woodchucks was immunized with pCw together with another plasmid coding for woodchuck interleukin-12 (IL-12). These animals exhibited WHcAg-specific T-cell proliferation with high IFN-gamma production and were protected against challenge with WHV, showing no viremia or low-level transient viremia after WHV inoculation. In conclusion, gene gun immunization with WHV core generates a non-Th1 type of response which does not protect against experimental infection. However, steering the immune response to a Th1 cytokine profile by IL-12 coadministration achieves protective immunity. These data demonstrate a crucial role of Th1 responses in the control of hepadnavirus replication and suggest new approaches to inducing protection against HBV infection.  相似文献   

6.
The infection of woodchucks with woodchuck hepatitis virus (WHV) provides an experimental model to study early immune responses during hepadnavirus infection that cannot be tested in patients. The T-cell response of experimentally WHV-infected woodchucks to WHsAg, rWHcAg, and WHcAg peptides was monitored by observing 5-bromo-2′-deoxyuridine and [2-3H]adenine incorporation. The first T-cell responses were directed against WHsAg 3 weeks after infection; these were followed by responses to rWHcAg including the immunodominant T-cell epitope of WHcAg (amino acids 97 to 110). Maximal proliferative responses were detected when the animals seroconvered to anti-WHs and anti-WHc (week 6). A decrease in the T-cell response to viral antigens coincided with clearance of viral DNA. Polyclonal rWHcAg-specific T-cell lines were established 6, 12, 18, and 24 weeks postinfection, and their responses to WHcAg peptides were assessed. Five to seven peptides including the immunodominant epitope were recognized throughout the observation period (6 months). At 12 months after infection, T-cell responses to antigens and peptides were not detected. Reactivation of T-cell responses to viral antigens and peptides occurred within 7 days after challenge of animals with WHV. These results demonstrate that a fast and vigorous T-cell response to WHsAg, rWHcAg, and amino acids 97 to 110 of the WHcAg occurs within 3 weeks after WHV infection. The peak of this response was associated with viral clearance and may be crucial for recovery from infection. One year after infection, no proliferation of T cells in response to antigens was observed; however, the WHV-specific T-cell response was reactivated after challenge of woodchucks with WHV and may be responsible for protection against WHV reinfection.  相似文献   

7.
Hepatitis B virus (HBV) persistence is facilitated by exhaustion of CD8 T cells that express the inhibitory receptor programmed cell death-1 (PD-1). Improvement of the HBV-specific T cell function has been obtained in vitro by inhibiting the PD-1/PD-ligand 1 (PD-L1) interaction. In this study, we examined whether in vivo blockade of the PD-1 pathway enhances virus-specific T cell immunity and leads to the resolution of chronic hepadnaviral infection in the woodchuck model. The woodchuck PD-1 was first cloned, characterized, and its expression patterns on T cells from woodchucks with acute or chronic woodchuck hepatitis virus (WHV) infection were investigated. Woodchucks chronically infected with WHV received a combination therapy with nucleoside analogue entecavir (ETV), therapeutic DNA vaccination and woodchuck PD-L1 antibody treatment. The gain of T cell function and the suppression of WHV replication by this therapy were evaluated. We could show that PD-1 expression on CD8 T cells was correlated with WHV viral loads during WHV infection. ETV treatment significantly decreased PD-1 expression on CD8 T cells in chronic carriers. In vivo blockade of PD-1/PD-L1 pathway on CD8 T cells, in combination with ETV treatment and DNA vaccination, potently enhanced the function of virus-specific T cells. Moreover, the combination therapy potently suppressed WHV replication, leading to sustained immunological control of viral infection, anti-WHs antibody development and complete viral clearance in some woodchucks. Our results provide a new approach to improve T cell function in chronic hepatitis B infection, which may be used to design new immunotherapeutic strategies in patients.  相似文献   

8.
9.
Lu M  Isogawa M  Xu Y  Hilken G 《Journal of virology》2005,79(10):6368-6376
A number of options are available to modify and improve DNA vaccines. An interesting approach to improve DNA vaccines is to fuse bioactive domains, like cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), to an antigen. Such fusion antigens are expressed in vivo and directed to immune cells by the specific bioactive domain and therefore possess great potential to induce and modulate antigen-specific immune responses. In the present study, we tested this new approach for immunomodulation against hepadnavirus infection in the woodchuck model. Plasmids expressing the nucleocapsid protein (WHcAg) and e antigen (WHeAg) of woodchuck hepatitis virus (WHV) alone or in fusion to the extracellular domain of woodchuck CTLA-4 and CD28 were constructed. Immunizations of mice with plasmids expressing WHcAg or WHeAg led to a specific immunoglobulin G2a (IgG2a)-dominant antibody response. In contrast, fusions of WHcAg to CTLA-4 and CD28 induced a specific antibody response with comparable levels of IgG1 and IgG2a. Furthermore, the specific IgG1 response to WHcAg/WHeAg developed immediately after a single immunization with the CTLA-4-WHcAg fusion. Woodchucks were immunized with plasmids expressing WHeAg or the CTLA-4-WHcAg fusion and subsequently challenged with WHV. CTLA-4-WHcAg showed an improved efficacy in induction of protective immune responses to WHV. In particular, the anti-WHsAg antibody response developed earlier after challenge in woodchucks that received immunizations with CTLA-4-WHcAg, consistent with the hypothesis that anti-WHs response is dependent on a Th cell response to WHcAg. In conclusion, the use of fusion genes represents a generally applicable strategy to improve DNA vaccination.  相似文献   

10.
The woodchuck model is an excellent animal model to study hepadnaviral infection. The new progresses in this model made possible to examine the T-cell mediated immune responses in acute and chronic hepadnaviral infection. Recently, a new assay for cytotoxic T-cells based on detection of CD107 was established for the woodchuck model. In addition, new immunotherapeutic approaches based on combination of potent antiviral treatment and DNA-protein vaccines were proven to be useful for treatment of chronic hepatitis B.  相似文献   

11.
Hepadnavirus at very low doses establishes in woodchucks asymptomatic, serologically undetectable but molecularly evident persistent infection. This primary occult infection (POI) preferentially engages the immune system and initiates virus-specific T cell response in the absence of antiviral antibody induction. The current study aimed to determine whether POI with time may culminate in serologically identifiable infection and hepatitis, and what are, if any, its pathological consequences. Juvenile woodchucks were intravenously injected with inocula containing 10 or 100 virions of woodchuck hepatitis virus (WHV) to induce POI and followed for life or up to 5.5 years thereafter. All 10 animals established molecularly detectable infection with virus DNA in serum (<100–200 copies/mL) and in circulating lymphoid cells, but serum WHV surface antigen and antibodies to WHV core antigen remained undetectable for life. By approximately 2.5–3.5 years post-infection, circulating virus transiently increased to 103 copies/mL and virus replication became detectable in the livers, but serological markers of infection and biochemical or histological evidence of hepatitis remained undetectable. Nonetheless, typical hepatocellular carcinoma (HCC) developed in 2/10 animals. WHV DNA integration into hepatic and lymphatic system genomes was identified in 9/10 animals. Virus recovered from the liver virus-negative or virus-positive phases of POI displayed the wild-type sequence and transmitted infection to healthy woodchucks causing hepatitis and HCC. In summary, for the first time, our data demonstrate that an asymptomatic hepadnaviral persistence initiated by very small amounts of otherwise pathogenic virus, advancing in the absence of traditional serological markers of infection and hepatitis, coincides with virus DNA integration into the host''s hepatic and immune system genomes, retains liver pro-oncogenic potency and is capable of transmitting liver pathogenic infection. This emphasizes the role for primary occult hepatitis B virus infection in the development of seemingly cyptogenic HCC in seronegative but virus DNA reactive patients.  相似文献   

12.
The woodchuck model is an excellent animal model to study hepadnaviral infection. The new progresses in this model made possible to examine the T-cell mediated immune responses in acute and chronic hepadnaviral infection. Recently, a new assay for cytotoxic T-cells based on detection of CD107 was established for the woodchuck model. In addition, new immunotherapeutic approaches based on combination of potent antiviral treatment and DNA-protein vaccines were proven to be useful for treatment of chronic hepatitis B.  相似文献   

13.
Fan H  Zhu Z  Wang Y  Zhang X  Lu Y  Tao Y  Fan W  Wang Z  Wang H  Roggendorf M  Lu M  Wang B  Yang D 《Cytokine》2012,60(1):179-185
Type I interferons (IFN-α/β) serve as the first line of defense against viral infection and share the same type I IFN receptor (IFNAR) complex, which is composed of IFNAR1 and -2. The Eastern woodchuck (Marmota monax) and Chinese woodchuck (Marmota himalayana) are suitable for studying hepatitis B virus (HBV) infection. Here, the complete or partial sequences of the IFNARs of both species were obtained and analyzed. Small interference RNAs targeting wIFNAR1 and -2 specifically down-regulated the expression of wIFNAR1 and -2 and the IFN-stimulated gene MxA in a woodchuck cell line, respectively. IFNAR2 was significantly up-regulated in primary woodchuck hepatocytes stimulated with IFN-α or -γ. The expression of woodchuck IFNAR1 and -2 was decreased in woodchucks chronically infected with woodchuck hepatitis virus (WHV). These results are essential for studying type I IFN-related innate immunity and therapy in hepadnaviral infection in the woodchuck model.  相似文献   

14.
Our previous studies have shown that Toll-like receptor (TLR) ligands, Poly I:C and lipopolysaccharide (LPS), are able to activate non-parenchymal liver cells and trigger the production of interferon (IFN) to inhibit hepatitis B virus replication in vivo and in vitro . However, little is known about TLR-mediated cellular responses in primary hepatocytes. By the model of woodchuck hepatitis virus (WHV) infected primary woodchuck hepatocytes (PWHs), Poly I:C and LPS stimulation resulted in upregulation of cellular antiviral genes and relevant TLRs mRNA expression respectively. LPS stimulation led to a pronounced reduction of WHV replicative intermediates without a significant IFN induction. Poly I:C transfection resulted in the production of IFN and a highly increased expression of antiviral genes in PWHs and slight inhibitory effect on WHV replication. LPS could activate nuclear factor kappa B, MAPK and PI-3k/Akt pathways in PWHs. Further, inhibitors of MAPK-ERK and PI-3k/Akt pathways, but not that of IFN signalling pathway, were able to block the antiviral effect of LPS. These results indicate that IFN- independent pathways which activated by LPS are able to downregulate hepadnaviral replication in hepatocytes.  相似文献   

15.
Hydrodynamic injection (HI) with a replication competent hepatitis B virus (HBV) genome may lead to transient or prolonged HBV replication in mice. However, the prolonged HBV persistence after HI depends on the specific backbone of the vector carrying HBV genome and the genetic background of the mouse strain. We asked whether a genetically closely related hepadnavirus, woodchuck hepatitis virus (WHV), may maintain the gene expression and replication in the mouse liver after HI. Interestingly, we found that HI of pBS-WHV1.3 containing a 1.3 fold overlength WHV genome in BALB/c mouse led to the long presence of WHV DNA and WHV proteins expression in the mouse liver. Thus, we asked whether WHV genome carrying foreign DNA sequences could maintain the long term gene expression and persistence. For this purpose, the coding region of HBV surface antigen (HBsAg) was inserted into the WHV genome to replace the corresponding region. Three recombinant WHV-HBV genomes were constructed with the replacement with HBsAg a-determinant, major HBsAg, and middle HBsAg. Serum HBsAg, viral DNA, hepatic WHV protein expression, and viral replication intermediates were detected in mice after HI with recombinant genomes. Similarly, the recombinant genomes could persist for a prolonged period of time up to 45 weeks in mice. WHV and recombinant WHV-HBV genomes did not trigger effective antibody and T-cell responses to viral proteins. The ability of recombinant WHV constructs to persist in mice is an interesting aspect for the future investigation and may be explored for in vivo gene transfer.  相似文献   

16.
Alpha interferon (IFN-alpha) and IFN-gamma are able to suppress hepadnavirus replication. The intrahepatic expression of high levels of IFN may enhance the antiviral activity. We investigated the effects of woodchuck-specific IFN-alpha (wIFN-alpha) and IFN-gamma(wIFN-gamma) on woodchuck hepatitis virus (WHV) replication in vivo by helper-dependent adenoviral (HD-Ad) vector-mediated gene transfer. The expression of biologically active IFNs was demonstrated in vitro after transduction of woodchuck cells with HD-Ad vectors encoding wIFN-alpha (HD-AdwIFN-alpha) or wIFN-gamma (HD-AdwIFN-gamma). The transduction efficacy of the HD-Ad vector in woodchuck liver in vivo was tested with a vector expressing green fluorescence protein (GFP). Immunohistochemical staining of liver samples on day 5 after injection showed expression of GFP in a high percentage of liver cells surrounding the central vein. The transduction of livers of WHV carriers in vivo with HD-AdwIFN-alpha or HD-AdwIFN-gamma induced levels of biologically active IFN, which could be measured in the sera of these animals. Expression of wIFN-alpha in the liver reduced intrahepatic WHV replication and WHV DNA in sera of about 1 log step in two of two woodchucks. Transduction with HD-AdwIFN-gamma, however, reduced WHV replicative intermediates only slightly in two of three animals, which was not accompanied with significant changes in the WHV DNA in sera. We demonstrated for the first time the successful HD-Ad vector-mediated transfer of genes for IFN-alpha and IFN-gamma in vivo and timely limited reduction of WHV replication by wIFN-alpha, but not by wIFN-gamma.  相似文献   

17.
Woodchuck hepatitis virus (WHV) mutants with core internal deletions (CID) occur naturally in chronically WHV-infected woodchucks, as do hepatitis B virus mutants in humans. We studied the replication of WHV deletion mutants in primary woodchuck hepatocyte cultures and in vivo after transmission to naive woodchucks. By screening 14 wild-caught, chronically WHV-infected woodchucks, two woodchucks, WH69 and WH70, were found to harbor WHV CID mutants. Consistent with previous results, WHV CID mutants from both animals had deletions of variable lengths (90 to 135 bp) within the middle of the WHV core gene. In woodchuck WH69, WHV CID mutants represented a predominant fraction of the viral population in sera, normal liver tissues, and to a lesser extent, in liver tumor tissues. In primary hepatocytes of WH69, the replication of wild-type WHV and CID mutants was maintained at least for 7 days. Although WHV CID mutants were predominant in fractions of cellular WHV replicative intermediates, mutant covalently closed circular DNAs (cccDNAs) appeared to be a small part of cccDNA-enriched fractions. Analysis of cccDNA-enriched fractions from liver tissues of other woodchucks confirmed that mutant cccDNA represents only a small fraction of the total cccDNA pool. Four naive woodchucks were inoculated with sera from woodchuck WH69 or WH70 containing WHV CID mutants. All four woodchucks developed viremia after 3 to 4 weeks postinoculation (p.i.). They developed anti-WHV core antigen (WHcAg) antibody, lymphoproliferative response to WHcAg, and anti-WHV surface antigen. Only wild-type WHV, but no CID mutant, was found in sera from these woodchucks. The WHV CID mutant was also not identified in liver tissue from one woodchuck sacrificed in week 7 p.i. Three remaining woodchucks cleared WHV. Thus, the presence of WHV CID mutants in the inocula did not significantly change the course of acute self-limiting WHV infection. Our results indicate that the replication of WHV CID mutants might require some specific selective conditions. Further investigations on WHV CID mutants will allow us to have more insight into hepadnavirus replication.  相似文献   

18.
19.
Induction of hepatitis B virus (HBV)-specific cytotoxic T cells by therapeutic immunization may be a strategy to treat chronic hepatitis B. In the HBV animal model, woodchucks, the application of DNA vaccine expressing woodchuck hepatitis virus (WHV) core antigen (WHcAg) in combination with antivirals led to the prolonged control of viral replication. However, it became clear that the use of more potent vaccines is required to overcome WHV persistence. Therefore, we asked whether stronger and more functional T-cell responses could be achieved using the modified vaccines and an optimized prime-boost vaccination regimen. We developed a new DNA plasmid (pCGWHc) and recombinant adenoviruses (AdVs) showing high expression levels of WHcAg. Mice vaccinated with the improved plasmid pCGWHc elicited a stronger WHcAg-specific CD8+ T-cell response than with the previously used vaccines. Using multicolor flow cytometry and an in vivo cytotoxicity assay, we showed that immunization in a DNA prime-AdV boost regimen resulted in an even more vigorous and functional T-cell response than immunization with the new plasmid alone. Immunization of naïve woodchucks with pCGWHc plasmid or AdVs induced a significant WHcAg-specific degranulation response prior to the challenge, this response had not been previously detected. Consistently, this response led to a rapid control of infection after the challenge. Our results demonstrate that high antigen expression levels and the DNA prime-AdV boost immunization improved the T-cell response in mice and induced significant T-cell responses in woodchucks. Therefore, this new vaccination strategy may be a candidate for a therapeutic vaccine against chronic HBV infection.  相似文献   

20.
The essential role of multispecific immune responses for the control of hepatitis B virus (HBV) infection implies the need of multimodal therapeutic strategies for chronic HBV infection, including antiviral chemotherapy and immunomodulation. This hypothesis was tested in the woodchuck model by a combination of lamivudine pretreatment and subsequent immunizations of woodchucks chronically infected with woodchuck hepatitis virus. The immunizations were performed with DNA vaccines or antigen-antibody immune complexes (IC)/DNA vaccines. Immunizations with IC/DNA vaccines led to an anti-woodchuck hepatitis virus surface antibody response and significant reductions of viral load and antigenemia, suggesting that such a strategy may be effective against chronic HBV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号