首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The prevalence of antibodies to morbilliviruses, Brucella and Toxoplasma was studied in the Black Sea bottlenose dolphin Tursiops truncatus ponticus and the beluga whale Delphinapterus leucas from the Sea of Okhotsk. The blood serum of 74 dolphins and 147 beluga whales was tested in 2002–2007. Antibodies to morbilliviruses were detected in 15 (20.3%) bottlenose dolphins and 20 (13.6%) beluga whales. Antibodies to Brucella were detected in 17 (23.0%) bottlenose dolphins and 10 (6.8%) beluga whales. Toxoplasma-specific antibodies were detected in 39 (52.7%) bottlenose dolphins and 7 (4.8%) beluga whales. Some animals had antibodies to two, or even three, of the pathogens. A high level of incidence of the pathogens in the sea animals was found in the densely populated coastal areas with high economic development.  相似文献   

3.
4.
The relationship between bats and coronaviruses (CoVs) has received considerable attention since the severe acute respiratory syndrome (SARS)-like CoV was identified in the Chinese horseshoe bat (Rhinolophidae) in 2005. Since then, several bats throughout the world have been shown to shed CoV sequences, and presumably CoVs, in the feces; however, no bat CoVs have been isolated from nature. Moreover, there are very few bat cell lines or reagents available for investigating CoV replication in bat cells or for isolating bat CoVs adapted to specific bat species. Here, we show by molecular clock analysis that alphacoronavirus (α-CoV) sequences derived from the North American tricolored bat (Perimyotis subflavus) are predicted to share common ancestry with human CoV (HCoV)-NL63, with the most recent common ancestor between these viruses occurring approximately 563 to 822 years ago. Further, we developed immortalized bat cell lines from the lungs of this bat species to determine if these cells were capable of supporting infection with HCoVs. While SARS-CoV, mouse-adapted SARS-CoV (MA15), and chimeric SARS-CoVs bearing the spike genes of early human strains replicated inefficiently, HCoV-NL63 replicated for multiple passages in the immortalized lung cells from this bat species. These observations support the hypothesis that human CoVs are capable of establishing zoonotic-reverse zoonotic transmission cycles that may allow some CoVs to readily circulate and exchange genetic material between strains found in bats and other mammals, including humans.  相似文献   

5.
Zhao Q  Li S  Xue F  Zou Y  Chen C  Bartlam M  Rao Z 《Journal of virology》2008,82(17):8647-8655
The newly emergent human coronavirus HKU1 (HCoV-HKU1) was first identified in Hong Kong in 2005. Infection by HCoV-HKU1 occurs worldwide and causes syndromes such as the common cold, bronchitis, and pneumonia. The CoV main protease (Mpro), which is a key enzyme in viral replication via the proteolytic processing of the replicase polyproteins, has been recognized as an attractive target for rational drug design. In this study, we report the structure of HCoV-HKU1 Mpro in complex with a Michael acceptor, inhibitor N3. The structure of HCoV-HKU1 provides a high-quality model for group 2A CoVs, which are distinct from group 2B CoVs such as severe acute respiratory syndrome CoV. The structure, together with activity assays, supports the relative conservation at the P1 position that was discovered by sequencing the HCoV-HKU1 genome. Combined with structural data from other CoV Mpros, the HCoV-HKU1 Mpro structure reported here provides insights into both substrate preference and the design of antivirals targeting CoVs.  相似文献   

6.
Chuck CP  Chow HF  Wan DC  Wong KB 《PloS one》2011,6(11):e27228

Background

Coronaviruses (CoVs) can be classified into alphacoronavirus (group 1), betacoronavirus (group 2), and gammacoronavirus (group 3) based on diversity of the protein sequences. Their 3C-like protease (3CLpro), which catalyzes the proteolytic processing of the polyproteins for viral replication, is a potential target for anti-coronaviral infection.

Methodology/Principal Findings

Here, we profiled the substrate specificities of 3CLpro from human CoV NL63 (group 1), human CoV OC43 (group 2a), severe acute respiratory syndrome coronavirus (SARS-CoV) (group 2b) and infectious bronchitis virus (IBV) (group 3), by measuring their activity against a substrate library of 19×8 of variants with single substitutions at P5 to P3'' positions. The results were correlated with structural properties like side chain volume, hydrophobicity, and secondary structure propensities of substituting residues. All 3CLpro prefer Gln at P1 position, Leu at P2 position, basic residues at P3 position, small hydrophobic residues at P4 position, and small residues at P1'' and P2'' positions. Despite 3CLpro from different groups of CoVs share many similarities in substrate specificities, differences in substrate specificities were observed at P4 positions, with IBV 3CLpro prefers P4-Pro and SARS-CoV 3CLpro prefers P4-Val. By combining the most favorable residues at P3 to P5 positions, we identified super-active substrate sequences ‘VARLQ↓SGF’ that can be cleaved efficiently by all 3CLpro with relative activity of 1.7 to 3.2, and ‘VPRLQ↓SGF’ that can be cleaved specifically by IBV 3CLpro with relative activity of 4.3.

Conclusions/Significance

The comprehensive substrate specificities of 3CLpro from each of the group 1, 2a, 2b, and 3 CoVs have been profiled in this study, which may provide insights into a rational design of broad-spectrum peptidomimetic inhibitors targeting the proteases.  相似文献   

7.

Background

Middle East respiratory syndrome coronavirus (MERS-CoV), which belongs to beta group of coronavirus, can infect multiple host species and causes severe diseases in humans. Multiple surveillance and phylogenetic studies suggest a bat origin. In this study, we describe the detection and full genome characterization of two CoVs closely related to MERS-CoV from two Italian bats, Pipistrellus kuhlii and Hypsugo savii.

Methods

Pool of viscera were tested by a pan-coronavirus RT-PCR. Virus isolation was attempted by inoculation in different cell lines. Full genome sequencing was performed using the Ion Torrent platform and phylogenetic trees were performed using IQtree software. Similarity plots of CoV clade c genomes were generated by using SSE v1.2. The three dimensional macromolecular structure (3DMMS) of the receptor binding domain (RBD) in the S protein was predicted by sequence-homology method using the protein data bank (PDB).

Results

Both samples resulted positive to the pan-coronavirus RT-PCR (IT-batCoVs) and their genome organization showed identical pattern of MERS CoV. Phylogenetic analysis showed a monophyletic group placed in the Beta2c clade formed by MERS-CoV sequences originating from humans and camels and bat-related sequences from Africa, Italy and China. The comparison of the secondary and 3DMMS of the RBD of IT-batCoVs with MERS, HKU4 and HKU5 bat sequences showed two aa deletions located in a region corresponding to the external subdomain of MERS-RBD in IT-batCoV and HKU5 RBDs.

Conclusions

This study reported two beta CoVs closely related to MERS that were obtained from two bats belonging to two commonly recorded species in Italy (P. kuhlii and H. savii). The analysis of the RBD showed similar structure in IT-batCoVs and HKU5 respect to HKU4 sequences. Since the RBD domain of HKU4 but not HKU5 can bind to the human DPP4 receptor for MERS-CoV, it is possible to suggest also for IT-batCoVs the absence of DPP4-binding potential. More surveillance studies are needed to better investigate the potential intermediate hosts that may play a role in the interspecies transmission of known and currently unknown coronaviruses with particular attention to the S protein and the receptor specificity and binding affinity.
  相似文献   

8.
While the novel Middle East respiratory syndrome coronavirus (MERS-CoV) is closely related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) in bats from Hong Kong, and other potential lineage C betacoronaviruses in bats from Africa, Europe, and America, its animal origin remains obscure. To better understand the role of bats in its origin, we examined the molecular epidemiology and evolution of lineage C betacoronaviruses among bats. Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were detected in 29% and 25% of alimentary samples from lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus abramus), respectively. Sequencing of their RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes revealed that MERS-CoV is more closely related to Pi-BatCoV HKU5 in RdRp (92.1% to 92.3% amino acid [aa] identity) but is more closely related to Ty-BatCoV HKU4 in S (66.8% to 67.4% aa identity) and N (71.9% to 72.3% aa identity). Although both viruses were under purifying selection, the S of Pi-BatCoV HKU5 displayed marked sequence polymorphisms and more positively selected sites than that of Ty-BatCoV HKU4, suggesting that Pi-BatCoV HKU5 may generate variants to occupy new ecological niches along with its host in diverse habitats. Molecular clock analysis showed that they diverged from a common ancestor with MERS-CoV at least several centuries ago. Although MERS-CoV may have diverged from potential lineage C betacoronaviruses in European bats more recently, these bat viruses were unlikely to be the direct ancestor of MERS-CoV. Intensive surveillance for lineage C betaCoVs in Pipistrellus and related bats with diverse habitats and other animals in the Middle East may fill the evolutionary gap.  相似文献   

9.
Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp''s 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp''s at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.  相似文献   

10.
11.
12.
The emergence of viruses such as severe acute respiratory syndrome coronavirus and Nipah virus has underscored the role of animal reservoirs in human disease and the need for reservoir surveillance. Here, we used a panviral DNA microarray to investigate the death of a captive beluga whale in an aquatic park. A highly divergent coronavirus, tentatively named coronavirus SW1, was identified in liver tissue from the deceased whale. Subsequently, the entire genome of SW1 was sequenced, yielding a genome of 31,686 nucleotides. Phylogenetic analysis revealed SW1 to be a novel virus distantly related to but most similar to group III coronaviruses.  相似文献   

13.
14.
《Anthrozo?s》2013,26(2):89-103
ABSTRACT

Although wild animals are listed in the literature of the humanistic sciences as a known peak trigger, this phenomenon has not until now been formally explored. In investigating peak experience from the perspective of the human—animal connection, the present study focuses on spontaneous encounters with cetaceans (whales and dolphins) that the human participant considered to be a highly significant personal event. Seven narrative stories were obtained from six human percipients who reported peak experience as a result of interactions with cetaceans which, with one exception, were free-ranging. The species represented are the Atlantic bottlenose dolphin (Tursiops truncatus); the orca (Orcinus orca), also known as killer whale or blackfish; and the beluga or white whale (Delphinapterus leucas). The data were analyzed through the process of phenomenological reduction, yielding five invariant themes: reciprocity of process, intention, connectedness, aliveness and harmony. Other essences of the wild-animal-triggered peak experience also are presented, along with suggestions regarding dynamics that may underlie spontaneous encounters which culminate in an emotional catharsis or other healing.  相似文献   

15.
Papain-like protease (PLpro) of coronaviruses (CoVs) carries out proteolytic maturation of non-structural proteins that play a role in replication of the virus and performs deubiquitination of host cell factors to scuttle antiviral responses. Avian infectious bronchitis virus (IBV), the causative agent of bronchitis in chicken that results in huge economic losses every year in the poultry industry globally, encodes a PLpro. The substrate specificities of this PLpro are not clearly understood. Here, we show that IBV PLpro can degrade Lys48- and Lys63-linked polyubiquitin chains to monoubiquitin but not linear polyubiquitin. To explain the substrate specificities, we have solved the crystal structure of PLpro from IBV at 2.15-Å resolution. The overall structure is reminiscent of the structure of severe acute respiratory syndrome CoV PLpro. However, unlike the severe acute respiratory syndrome CoV PLpro that lacks blocking loop (BL) 1 of deubiquitinating enzymes, the IBV PLpro has a short BL1-like loop. Access to a conserved catalytic triad consisting of Cys101, His264, and Asp275 is regulated by the flexible BL2. A model of ubiquitin-bound IBV CoV PLpro brings out key differences in substrate binding sites of PLpros. In particular, P3 and P4 subsites as well as residues interacting with the β-barrel of ubiquitin are different, suggesting different catalytic efficiencies and substrate specificities. We show that IBV PLpro cleaves peptide substrates KKAG-7-amino-4-methylcoumarin and LRGG-7-amino-4-methylcoumarin with different catalytic efficiencies. These results demonstrate that substrate specificities of IBV PLpro are different from other PLpros and that IBV PLpro might target different ubiquitinated host factors to aid the propagation of the virus.  相似文献   

16.

Background

Bat-borne virus surveillance is necessary for determining inter-species transmission risks and is important due to the wide-range of bat species which may harbour potential pathogens. This study aimed to monitor coronaviruses (CoVs) and paramyxoviruses (PMVs) in bats roosting in northwest Italian regions. Our investigation was focused on CoVs and PMVs due to their proven ability to switch host and their zoonotic potential. Here we provide the phylogenetic characterization of the highly conserved polymerase gene fragments.

Results

Family-wide PCR screenings were used to test 302 bats belonging to 19 different bat species. Thirty-eight animals from 12 locations were confirmed as PCR positive, with an overall detection rate of 12.6% [95% CI: 9.3–16.8]. CoV RNA was found in 36 bats belonging to eight species, while PMV RNA in three Pipistrellus spp. Phylogenetic characterization have been obtained for 15 alpha- CoVs, 5 beta-CoVs and three PMVs; moreover one P. pipistrellus resulted co-infected with both CoV and PMV. A divergent alpha-CoV clade from Myotis nattereri SpA is also described. The compact cluster of beta-CoVs from R. ferrumequinum roosts expands the current viral sequence database, specifically for this species in Europe. To our knowledge this is the first report of CoVs in Plecotus auritus and M. oxygnathus, and of PMVs in P. kuhlii.

Conclusions

This study identified alpha and beta-CoVs in new bat species and in previously unsurveyed Italian regions. To our knowledge this represents the first and unique report of PMVs in Italy. The 23 new bat genetic sequences presented will expand the current molecular bat-borne virus databases. Considering the amount of novel bat-borne PMVs associated with the emergence of zoonotic infections in animals and humans in the last years, the definition of viral diversity within European bat species is needed. Performing surveillance studies within a specific geographic area can provide awareness of viral burden where bats roost in close proximity to spillover hosts, and form the basis for the appropriate control measures against potential threats for public health and optimal management of bats and their habitats.
  相似文献   

17.
Coronaviruses (CoVs) have very large RNA viral genomes with a distinct genomic architecture of core and accessory open reading frames (ORFs). It is of utmost importance to understand their patterns and limits of homologous and nonhomologous recombination, because such events may affect the emergence of novel CoV strains, alter their host range, infection rate, tissue tropism pathogenicity, and their ability to escape vaccination programs. Intratypic recombination among closely related CoVs of the same subgenus has often been reported; however, the patterns and limits of genomic exchange between more distantly related CoV lineages (intertypic recombination) need further investigation. Here, we report computational/evolutionary analyses that clearly demonstrate a substantial ability for CoVs of different subgenera to recombine. Furthermore, we show that CoVs can obtain—through nonhomologous recombination—accessory ORFs from core ORFs, exchange accessory ORFs with different CoV genera, with other viruses (i.e., toroviruses, influenza C/D, reoviruses, rotaviruses, astroviruses) and even with hosts. Intriguingly, most of these radical events result from double crossovers surrounding the Spike ORF, thus highlighting both the instability and mobile nature of this genomic region. Although many such events have often occurred during the evolution of various CoVs, the genomic architecture of the relatively young SARS-CoV/SARS-CoV-2 lineage so far appears to be stable.  相似文献   

18.
Xue X  Yu H  Yang H  Xue F  Wu Z  Shen W  Li J  Zhou Z  Ding Y  Zhao Q  Zhang XC  Liao M  Bartlam M  Rao Z 《Journal of virology》2008,82(5):2515-2527
Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (Mpro), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) Mpro and a severe acute respiratory syndrome CoV (SARS-CoV) Mpro mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of Mpro. A monomeric form of IBV Mpro was identified for the first time in CoV Mpro structures. A comparison of these two structures to other available Mpro structures provides new insights for the design of substrate-based inhibitors targeting CoV Mpros. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV Mpro and was found to demonstrate in vitro inactivation of IBV Mpro and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV Mpro.  相似文献   

19.
The spike (S) protein of the coronavirus (CoV) infectious bronchitis virus (IBV) is cleaved into S1 and S2 subunits at the furin consensus motif RRFRR537/S in virus-infected cells. In this study, we observe that the S2 subunit of the IBV Beaudette strain is additionally cleaved at the second furin site (RRRR690/S) in cells expressing S constructs and in virus-infected cells. Detailed time course experiments showed that a peptide furin inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethylketone, blocked both viral entry and syncytium formation. Site-directed mutagenesis studies revealed that the S1/S2 cleavage by furin was not necessary for, but could promote, syncytium formation by and infectivity of IBV in Vero cells. In contrast, the second site is involved in the furin dependence of viral entry and syncytium formation. Mutations of the second site from furin-cleavable RRRR/S to non-furin-cleavable PRRRS and AAARS, respectively, abrogated the furin dependence of IBV entry. Instead, a yet-to-be-identified serine protease(s) was involved, as revealed by protease inhibitor studies. Furthermore, sequence analysis of CoV S proteins by multiple alignments showed conservation of an XXXR/S motif, cleavable by either furin or other trypsin-like proteases, at a position equivalent to the second IBV furin site. Taken together, these results suggest that proteolysis at a novel XXXR/S motif in the S2 subunit might be a common mechanism for the entry of CoV into cells.The surface glycoproteins of numerous pathogenic enveloped viruses are proteolytically matured during infection in the host or cultured cell lines and are essential for the initiation of infection (33). In many cases, this processing is carried out by cellular proprotein convertases (PCs), most commonly furin (reviewed in reference 46). Furin is a calcium-dependent serine protease that circulates between the trans-Golgi network, plasma membrane, and early endosome by association with exocytic and endocytic pathways (9, 39). This membrane-bound enzyme undergoes further processing and is secreted from cells in an active soluble form (49). Furin processes a wide variety of precursor proteins after the C-terminal arginine (R) residue in the preferred consensus motif RXR(K)R/X (K is lysine, X is any amino acid, and the slash [/] indicates the cleavage position) for viral fusion proteins (2, 32, 33). So far, seven PCs have been identified in mammalian cells, and they display similar, but not identical, specificities for basic motifs at the cleavage site of a substrate. Accumulated studies indicate that secretory PCs, such as furin, PC5, and PC7, are major candidates for processing surface glycoproteins of pathogenic viruses, such as human immunodeficiency virus types 1 and 2, avian influenza virus H5N1, Ebola virus, and respiratory syncytial virus (RSV) (2, 27).Coronavirus (CoV) spike (S) protein, a class I viral fusion protein (7), is responsible for viral attachment to and entry into target cells and for cell-to-cell spread during infection. Typical class I fusion proteins usually require processing at a position immediately upstream of the fusion peptide in order to expose the membrane-anchored subunit. However, in infectious bronchitis virus (IBV) and murine hepatitis virus (MHV), processing of the S protein by furin occurs at a position more than 200 amino acids away from the predicted fusion peptides (6). Furthermore, there is a tradeoff between the furin cleavability of S protein and heparin sulfate (HS) binding in certain CoV strains adapted to cultured cell lines (15, 17). Consequently, CoV S proteins may be proteolytically activated by other proteases to initiate virus-cell fusion. Recently, proteolytic activation by an endosomal protease, cathepsin L, and a membrane-bound protease, factor Xa, was reported to play a role in the entry of severe acute respiratory syndrome (SARS)-CoV (18, 45). Cathepsin is also implicated in the proteolytic activation of many CoV S proteins, including human CoV 229E, feline infectious peritonitis virus (FIPV) 1146, feline enteric CoV (FECV) 1683, and MHV strain 2 (MHV-2), but not for MHV A59 and human CoV NL63 (31, 41, 43, 45).The association of cell surface sialic acid and a low-pH environment were reported to be required for IBV entry (14, 51, 52). However, the factors that determine the infectivity of IBV for cultured cells have yet to be identified. Clinical and field isolates of IBV can be propagated only in embryonated chicken eggs or, transiently, in primary chicken embryo kidney cells. In contrast, IBV of Beaudette strain origin can be readily adapted to cultured cells, such as Vero and BHK-21, by serial passages (1, 22, 40), and hence, it is often used as an in vitro infection model of IBV. Studies with a recombinant infectious clone system demonstrated that IBV S protein is indeed the determinant of extended cell tropism (12). IBV S protein is usually cleaved into S1 and S2 subunits at the furin consensus motif, RRFRR537/S (the position includes the signal peptide) in virus-infected cells (13). Interestingly, Beaudette and related strains carry a mutation at position 687 of the S protein from proline (P) to R, creating a novel furin site (RRRR690/S or RRKR690/S). The acquisition of an additional furin site in the fusion protein may increase cell-to-cell spread by further activation of the protein (23) or extend the host range by utilization of cell surface HS as an entry receptor (17). In this study, furin-mediated cleavage of the IBV S protein at two furin sites was observed in IBV-infected cells. Mutational analysis of the two furin sites revealed that the second site is implicated in the furin dependence of IBV entry and syncytium formation. In contrast, cleavage at the S1/S2 site by furin was not necessary for, but could promote, syncytium formation and the infectivity of IBV in Vero cells.  相似文献   

20.
Whistle characteristics were quantitatively compared between both geographically separated and neighboring populations of Atlantic spotted dolphins (Stenella frontalis), bottlenose dolphins (Tursiops truncatus), and pilot whales (Globicephala spp.) in U.S. waters to evaluate if intraspecific acoustic differences exist between groups. We compared nine whistle characteristics between continental shelf and offshore Atlantic spotted dolphins in the western North Atlantic and between northern Gulf of Mexico and western North Atlantic bottlenose dolphins and pilot whales using discriminant analysis. Offshore Atlantic spotted dolphin whistles were significantly different (Hotelling's T2, P= 0.0003) from continental shelf whistles in high frequency, bandwidth, duration, number of steps, and number of inflection points. Atlantic bottlenose dolphin whistles were significantly different (Hotelling's T2, P < 0.0001) from those in the Gulf of Mexico in duration, number of steps, and number of inflection points. There was no significant difference between pilot whale whistles in the two basins. The whistle differences indicate acoustic divergence between groups in different areas that may arise from geographic isolation or habitat separation between neighboring but genetically distinct populations of dolphins. This study supports the premise that acoustic differences can be a tool to evaluate the ecological separation between marine mammal groups in field studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号