首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The β2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the β2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the β2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets.  相似文献   

3.
Caveolin,Cholesterol, and Lipid Droplets?   总被引:11,自引:0,他引:11  
  相似文献   

4.
Cholesterol plays an essential role in determining cell membrane physico-chemical characteristics and functions. A proper membrane structure is critical in pancreatic β-cells for glucose-mediated insulin secretion, and alterations in cellular cholesterol content may negatively affect this process, leading to β-cell dysfunction. The low density lipoprotein receptor (LDL-R) appears to play a relevant role in ß-cell dysfunction due to cholesterol accumulation. This observation raised the question of whether hypocholesterolemic drugs which increase LDL-R expression might bear diabetogenic properties, thus increasing the risk of new-onset diabetes or worsen glycaemic parameters in diabetic patients.Being at higher cardiovascular risk, diabetic patients are usually treated with hypolipidemic drugs to correct the atherogenic dyslipidemia characteristic of this pathological condition. Statin therapy has been associated with an increased incidence of new-onset diabetes (NOD), being the diabetogenic effect depending on the type and dose of statin. However, it is worth noting that the benefits on cardiovascular mortality largely exceed the increased risk associated with the development of diabetes. Although genetic variants associated with lower levels of LDL-C are also associated with an increased NOD risk, clinical trials with lipid-lowering drugs other than statins, namely ezetimibe or monoclonal antibodies against PCSK9, did not observe an increase of developing diabetes.In summary, molecular evidence clearly points to a key role for cholesterol homeostasis in pancreatic β-cell function which, in humans, is negatively affected by statins. Available data exclude that this could be the case for other hypocholesterolemic approaches, but long-term studies are warranted to explore this critical aspect.  相似文献   

5.
A molecular model of ionic channel formed by flexible molecules of amphotericin B and cholesterol is proposed. Complexes with axial symmetry from 5 to 11 were simulated. In contrast to the model of the channel formed from rigid molecules, flexible molecules form a tightly packed structure consolidated by both dispersive forces and intermolecular hydrogen bonds. Contributions of a lactone ring, polar heads, cholesterol and lipid environments to the global energy of the complex formation are discussed. Among the complexes capable of ionic transport, that of axial symmetry eight is preferable. Two types of complexes, differing by the number of intramolecular hydrogen bonds, are shown to be possible. Received: 25 April 1997/Revised: 20 November 1997  相似文献   

6.
探讨了青稞β-葡聚糖的质量及粒度、胆固醇浓度、吸附温度及时间对其吸附胆固醇作用的影响.结果显示,青稞β-葡聚糖对胆固醇具有较好的吸附作用.该吸附作用随胆固醇浓度和吸附时间的增加而增大,随β-葡聚糖的质量及粒度和温度增大而减小.青稞β-葡聚糖吸附胆固醇的适宜条件为:青稞β-葡聚糖终浓度为2.75~3.00 mg/mL的胆固醇溶液中于30℃时振荡吸附90 min.青稞β-葡聚糖对胆固醇的吸附规律符合Freundlich方程,其吸附方式包括物理吸附和化学吸附.  相似文献   

7.
Cholesterol 7α-hydroxylase in rat liver microsomal preparations   总被引:5,自引:5,他引:0       下载免费PDF全文
Subcellular fractions containing microsomes prepared from rat livers homogenized in the absence of EDTA catalysed the oxidation of cholesterol to 7alpha-hydroxycholesterol, 7-oxocholesterol, 7beta-hydroxycholesterol and 5alpha-cholestane-3beta,5,6beta-triol. These reactions required native protein, molecular oxygen and NADPH. It is suggested that these compounds are formed by a peroxidation analogous to the peroxidation of fatty acids catalysed by liver microsomal preparations. Incubations of [4-(14)C]cholesterol with microsomal preparations from rat liver homogenized in the presence of EDTA gave 7alpha-hydroxy[(14)C]cholesterol as the main product. This reaction required molecular oxygen and NADPH, and was inhibited by CO. The mass of 7alpha-hydroxycholesterol formed during the incubation was measured by a double-isotope-derivative dilution procedure. This procedure was used to assay the activity of cholesterol 7alpha-hydroxylase and to measure low concentrations of endogenous 7alpha-hydroxycholesterol in liver.  相似文献   

8.
Exogenously hypercholesterolemic (ExHC) rats promptly increase serum cholesterol concentration in response to dietary cholesterol. To examine underlying mechanism(s) for this susceptibility, responses of mRNAs for cholesterol metabolism-related proteins and their activities in the liver to dietary cholesterol were compared between ExHC rats and their progenitor Sprague-Dawley rats. ExHC rats slightly decreased the abundance of low-density-lipoprotein (LDL) receptor mRNA in response to dietary cholesterol, although the amount of LDL receptor was not influenced. The abundance of cholesterol 7α-hydroxylase mRNA and the enzyme activity in response to dietary cholesterol were greater in ExHC rats, but the fecal excretion of bile acid was comparable between the strain. Dietary cholesterol-dependent elevation of acyl-CoA:cholesterol acyltransferase activity was greater in ExHC rats. The concentration of liver triacylglycerols was markedly lower in ExHC rats. These results suggest that ExHC rats may increase serum cholesterol by increasing hepatic secretion of cholesteryl ester-rich particles.  相似文献   

9.
The cluster of neurodegenerative disorders in the western Pacific termed amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC) has been repeatedly linked to the use of seeds of various species of cycad. Identification and chemical synthesis of the most toxic compounds in the washed cycad seeds, a variant phytosteryl glucosides, and even more toxic cholesterol β-D-glucoside (CG), which is produced by the human parasite Helicobacter pylori, provide a possibility to study in vitro the mechanisms of toxicity of these compounds. We studied in detail the effects of CG on the respiratory activities and generation of reactive oxygen species (ROS) by nonsynaptic brain and heart mitochondria oxidizing various substrates. The stimulatory effects of CG on respiration and ROS generation showed strong substrate dependence, suggesting involvement of succinate dehydrogenase (complex II). Maximal effects on ROS production were observed with 1 μmol CG/1 mg mitochondria. At this concentration the cycad toxins β-sitosterol-β-D-glucoside and stigmasterol-β-D-glucoside had effects on respiration and ROS production similar to CG. However, poor solubility precluded full concentration analysis of these toxins. Cholesterol, stigmasterol and β-sitosterol had no effect on mitochondrial functions studied at concentrations up to 100 μmol/mg protein. Our results suggest that CG may influence mitochondrial functions through changes in the packing of the bulk membrane lipids, as was shown earlier by Deliconstantinos et al. (Biochem Cell Biol 67:16-24, 1989). The neurotoxic effects of phytosteryl glucosides and CG may be associated with increased oxidative damage of neurons. Unlike heart mitochondria, in activated neurons mitochondria specifically increase ROS production associated with succinate oxidation (Panov et al., J Biol Chem 284:14448-14456, 2009).  相似文献   

10.
Chlorella powder (CP) has a hypocholesterolemic effect and high bile acid-binding capacity; however, its effects on hepatic cholesterol metabolism are still unclear. In the present study, male Wistar rats were divided into four groups and fed a high sucrose + 10% lard diet (H), an H + 10% CP diet (H+CP), an H + 0.5% cholesterol + 0.25% sodium cholate diet (C), or a C + 10% CP diet (C+CP) for 2 weeks. CP decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but did not affect these parameters in rats fed H-based diets. CP increased the hepatic mRNA level and activity of cholesterol 7α-hydroxylase (CYP7A1). CP increased hepatic HMG-CoA reductase (HMGR) activity in the rats fed H-based diets, but not in rats fed C-based diets. CP did not affect hepatic mRNA levels of sterol 27-hydroxylase, HMGR, low-density lipoprotein (LDL) receptor, scavenger receptor class B1, ATP-binding cassette (ABC) A1, ABCG5, or ABCB11. Furthermore, the effect of a 3.08% Chlorella indigestible fraction (CIF, corresponding to 10% CP) on hepatic cholesterol metabolism was determined using the same animal models. CIF also decreased serum and liver cholesterol levels significantly in rats fed C-based diets. CIF increased hepatic CYP7A1 mRNA levels. These results suggest that the hypocholesterolemic effect of CP involves enhancement of cholesterol catabolism through up-regulation of hepatic CYP7A1 expression and that CIF contributes to the hypocholesterolemic effect.  相似文献   

11.
Leishmania are obligate intracellular parasites that invade and survive within host macrophages and can result in visceral leishmaniasis, a major public health problem worldwide. The entry of intracellular parasites, in general, involves interaction with the plasma membrane of host cells. Cholesterol in host cell membranes was recently shown to be necessary for binding and internalization of Leishmania and for the efficient presentation of leishmanial antigens in infected macrophages. This article describes the need to explore cyclodextrin-based compounds, which modulate host membrane cholesterol levels, as a possible therapeutic strategy against leishmaniasis in addition to other intracellular parasites.  相似文献   

12.
Lu X  Liu J  Hou F  Liu Z  Cao X  Seo H  Gao B 《Cell stress & chaperones》2011,16(5):539-548
Type 2 diabetes is often associated with high blood cholesterol. Here, we investigated the effect of cholesterol loading on MIN6 cells derived from pancreatic β cells. Exposure of MIN6 cells to cholesterol-induced apoptosis in time- and dose-dependent manner. Treatment with methyl-β-cyclodextrin that removes cholesterol from plasma membrane prevented the cells from cholesterol-induced apoptosis. Western blot analysis revealed that the levels of phosphorylated-p38 mitogen-activated protein kinase (P-p38 MAPK) and c-Jun N-terminal kinases (P-JNK) were significantly increased after the cholesterol loading, suggesting that the stress-activated protein kinase signaling was stimulated. A specific p38 inhibitor rescued MIN6 cells from cholesterol-induced apoptosis, while JNK inhibitor failed, suggesting the importance of activation of p38 MAPK signaling in response to cholesterol. The expression of Bip and CHOP, the endoplasmic reticulum (ER) stress markers, remained unaffected, indicating that the ER stress may not be involved in the cytotoxicity of cholesterol on the ΜΙΝ6 cells. The intracellular concentration of reactive oxygen species measured by use of 2′,7′-dichlorofluorescin diacetate was significantly increased after cholesterol loading, demonstrating the induced apoptosis was mediated through oxidative stress. Addition of reduced form of glutathione in the medium rescued MIN6 cells from apoptosis induced by cholesterol loading. Taken together, these results demonstrate that the free cholesterol loading can induce apoptosis of MIN6 cells mediated by oxidative stress and the activation of p38 MAPK signaling.  相似文献   

13.
Since the discovery of the significance of the cholesterol-carrying apolipoprotein E and cholesterolaemia as major risk factors for Alzheimer's Disease (AD) there has been a mounting interest in the role of this lipid as a possible pathogenic agent. In this review we analyse the current evidence linking cholesterol metabolism and regulation in the CNS with the known mechanisms underlying the development of Alzheimer's Disease. Cholesterol is known to affect amyloid-beta generation and toxicity, although it must be considered that the results studies using the statin class of drugs to lower plasma cholesterol may be affected by other effects associated with these drugs. Finally, we report some of our results pointing at the interplay between neurons and astrocytes and NADPH oxidase activation as a new candidate mechanism linking cholesterol and AD pathology.  相似文献   

14.
Using a coarse-grained lipid and peptide model, we show that the free energy stabilization of amyloid-β in heterogeneous lipid membranes is predicted to have a dependence on asymmetric distributions of cholesterol compositions across the membrane leaflets. We find that a highly asymmetric cholesterol distribution that is depleted on the exofacial leaflet but enhanced on the cytofacial leaflet of the model lipid membrane thermodynamically favors membrane retention of a fully embedded Aβ peptide. However, in the case of cholesterol redistribution that increases concentration of cholesterol on the exofacial layer, typical of aging or Alzheimer’s disease, the free energy favors peptide extrusion of the highly reactive N-terminus into the extracellular space that may be vulnerable to aggregation, oligomerization, or deleterious oxidative reactivity.  相似文献   

15.
An experiment was conducted to determine the effect of dietary vitamin E and C on serum metabolites, yolk cholesterol, egg quality, and performance of layer hens. One hundred sixty-eight commercial Hy-Line W-36 layer hens were randomly divided into seven groups and six replicates with four hens in each. Dietary treatments were introduced after the pre-experimental period (10 days) to adjust egg production. Treatments were levels of vitamin E or C (100, 200, and 400 mg/kg diet) supplementation to the basal diet for 4 weeks, whereas the control group received no supplementation. Egg production, egg weight, and feed consumption were recorded during the study. Shell thickness, Haugh unit score, yolk color, yolk weight, yolk cholesterol, and blood parameters were measured at the end of experiment. There was no significant effect of dietary vitamin E or C on hen performance. Egg yolk cholesterol concentrations decreased linearly by antioxidant vitamin supplementation (P?<?0.01). Egg yolk cholesterol reduction did not have any negative effect on egg production rate. Antioxidants, especially vitamin C, increased serum glucose concentration (P?<?0.05). Serum total cholesterol content did not change by vitamin supplementation but cholesterol in high-density lipoprotein (HDL-C) decreased and cholesterol in low-density lipoprotein (LDL-C) increased (P?<?0.05), as dietary vitamin E or C supplementation increased in diets. These results are in conflict with the previous hypothesis that antioxidants have a role in LDL-C removal from the blood or increasing HDL-C. Vitamin E was more effective than vitamin C in this case and if these results are confirmed by further studies, they may result to revision in researchers’ point of view about antioxidant especially in human medicine.  相似文献   

16.
17.
Niemann–Pick C1-Like 1 (NPC1L1) mediates cholesterol absorption, and ezetimibe is a potent NPC1L1 inhibitor applicable for medication of hypercholesterolemia. Epidemiological studies demonstrated that consumption of polyphenols correlates with a decreased risk for atherosclerosis due to their antioxidant effect. This activity can hardly be attributable to the antioxidant activity only, and we hypothesized that polyphenols inhibit intestinal transport of cholesterol. We elucidated the kinetic parameters of intestinal cholesterol absorption, screened several polyphenols for their ability to specifically inhibit intestinal cholesterol absorption, and determined the inhibitory effects of selected flavonoids in vitro and in vivo. The concentration-dependent uptake of cholesterol by Caco-2 cells obeyed a monophasic saturation process. This indicates the involvement of an active-passive transport, i.e., NPC1L1. Parameters of cholesterol uptake by Caco-2 cells were as follows: J max, K t, and K d were 6.89±2.96 19.03±11.58 µM, and 0.11±0.02 pmol/min/mg protein, respectively. Luteolin and quercetin inhibited cholesterol absorption by Caco-2 cells and human embryonic kidney 293T cells expressing NPC1L1. When preincubated Caco-2 cells with luteolin and quercetin before the assay, cholesterol uptake significantly decreased. The inhibitory effects of these flavonoids were maintained for up to 120 min. The level of inhibition and irreversible effects were similar to that of ezetimibe. Serum cholesterol levels significantly decreased more in rats fed both cholesterol and luteolin (or quercetin), than in those observed in the cholesterol feeding group. As quercetin induced a significant decrease in the levels of NPC1L1 mRNA in Caco-2 cells, the in vivo inhibitory effect may be due to the expression of NPC1L1. These results suggest that luteolin and quercetin reduce high blood cholesterol levels by specifically inhibiting intestinal cholesterol absorption mediated by NPC1L1.  相似文献   

18.
Cholesterol sulfate in human physiology: what's it all about?   总被引:1,自引:0,他引:1  
Cholesterol sulfate is quantitatively the most important known sterol sulfate in human plasma, where it is present in a concentration that overlaps that of the other abundant circulating steroid sulfate, dehydroepiandrosterone (DHEA) sulfate. Although these sulfolipids have similar production and metabolic clearance rates, they arise from distinct sources and are metabolized by different pathways. While the function of DHEA sulfate remains an enigma, cholesterol sulfate has emerged as an important regulatory molecule. Cholesterol sulfate is a component of cell membranes where it has a stabilizing role, e.g., protecting erythrocytes from osmotic lysis and regulating sperm capacitation. It is present in platelet membranes where it supports platelet adhesion. Cholesterol sulfate can regulate the activity of serine proteases, e.g., those involved in blood clotting, fibrinolysis, and epidermal cell adhesion. As a result of its ability to regulate the activity of selective protein kinase C isoforms and modulate the specificity of phosphatidylinositol 3-kinase, cholesterol sulfate is involved in signal transduction. Cholesterol sulfate functions in keratinocyte differentiation, inducing genes that encode for key components involved in development of the barrier.The accumulating evidence demonstrating a regulatory function for cholesterol sulfate appears solid; the challenge now is to work out the molecular mechanisms whereby this interesting molecule carries out its various roles.  相似文献   

19.
The production of amyloid-β (Aβ) is the key factor driving pathogenesis in Alzheimer's disease (AD). Increasing concentrations of Aβ within the brain cause synapse degeneration and the dementia that is characteristic of AD. Here the factors that affect the release of disease-relevant forms Aβ were studied in a cell model. 7PA2 cells expressing the human amyloid precursor protein released soluble Aβ oligomers that caused synapse damage in cultured neurons. Supernatants from 7PA2 cells treated with the cholesterol synthesis inhibitor squalestatin contained similar concentrations of Aβ42 to control cells but did not cause synapse damage in neuronal cultures. These supernatants contained reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers. Treatment of 7PA2 cells with platelet-activating factor (PAF) antagonists had similar effects; it reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers in cell supernatants. PAF activated cholesterol ester hydrolases (CEH), enzymes that released cholesterol from stores of cholesterol esters. Inhibition of CEH also reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers in cell supernatants. The Aβ monomers produced by treated cells protected neurons against Aβ oligomer-induced synapse damage. These studies indicate that pharmacological manipulation of cells can alter the ratio of Aβ monomer:oligomer released and consequently their effects on synapses.  相似文献   

20.
Alzheimer’s Disease—A Dysfunction in Cholesterol and Lipid Metabolism   总被引:2,自引:0,他引:2  
1. Strong etiological association exists between dysfunctional metabolism of brain lipids, age-related changes in the cerebral vasculature and neurodegenerative features characteristic of Alzheimer’s disease (AD) brain.2. In this short review, recent experimental evidence for these associations is further discussed below.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号