首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsible for nutrient uptake respond to changes in their mechanical environment accomplished by varying the fluid viscosity over a factor of 7. Analysis with a phenomenological model of trajectories of swimmers made neutrally buoyant with magnetic forces combined with high-speed imaging of ciliary beating reveal that the body cilia exert a nearly constant propulsive force primarily by reducing their beat frequency as viscosity increases. By contrast, the oral-groove cilia beat at a nearly constant frequency. The existence of two extremes of motor response in a unicellular organism prompts unique investigations of factors controlling ciliary beating.  相似文献   

2.
Adaptations of ciliary systems for the propulsion of water and mucus   总被引:1,自引:0,他引:1  
1. The characteristics of ciliary systems are determined by the dominance of viscous effects over inertial effects. 2. The velocity of water propulsion depends on ciliary length, beat frequency, pattern of beating, the arrangement of the cilia and their co-ordination. Beating cilia influence a layer of water only two or three cilium lengths deep, with maximal velocity near the ciliary tip. 3. Mucus is propelled by the tips of short cilia that penetrate the mucus; these cilia are closely spaced on epithelia, and achieve slow propulsion that is relatively independent of load and does not require strong ciliary co-ordination.  相似文献   

3.
The locomotor behavior of Paramecium depends on the ciliary beat direction and beat frequency. Changes in the ciliary beat are controlled by a signal transduction mechanism that follows changes in the membrane potential. These events take place in cilia covered with a ciliary membrane. To determine the effects of second messengers in the cilia, cortical sheets were used with intact ciliary membrane as a half-closed system in which each cilium is covered with a ciliary membrane with an opening to the cell body. Cyclic nucleotides and their derivatives applied from an opening to the cell body affected the ciliary beat. cAMP and 8-Br-cAMP increased the beat frequency and the efficiency of propulsion and acted antagonistically to the action of Ca(2+). cGMP and 8-Br-cGMP increased the efficiency of propulsion accompanying clear metachronal waves but decreased the beat frequency. These results indicate that the cyclic nucleotides affect target proteins in the ciliary axonemes surrounded by the ciliary membrane without a membrane potential and increase the efficiency of propulsion of the ciliary beat. In vitro phosphorylation of isolated ciliary axonemes in the presence of cyclic nucleotides and their derivatives revealed that the action of cAMP was correlated with the phosphorylation of 29-kDa and 65-kDa proteins and that the action of cGMP was correlated with the phosphorylation of a 42-kDa protein.  相似文献   

4.
The unicellular green alga Chlamydomonas reinhardtii steers through water with a pair of cilia (eukaryotic flagella). Long-term observation of the beating of its cilia with controlled stimulation is improving our understanding of how a cell responds to sensory inputs. Here we describe how to record ciliary motion continuously for long periods. We also report experiments on the network of intracellular signaling that connects the environment inputs with response outputs. Local spatial changes in ciliary response on the time scale of the underlying biochemical dynamics are observed. Near-infrared light monitors the cells held by a micropipette. This condition is tolerated well for hours, not interfering with ciliary beating or sensory transduction. A computer integrates the light stimulation of the eye of Chlamydomonas with the ciliary motion making possible long-term correlations. Measures of ciliary responses include the beating frequency, stroke velocity, and stroke duration of each cilium, and the relative phase of the cis and trans cilia. The stationarity and dependence of the system on light intensity was investigated. About 150,000,000 total beat cycles and up to 8 h on one cell have been recorded. Each beat cycle is resolved so that each asynchronous beat is detected. Responses extend only a few hundred milliseconds, but there is a persistence of momentary changes that last much longer. Interestingly, we see a response that is linear with absolute light intensity as well as different kinds of response that are clearly nonlinear, implying two signaling pathways from the cell body to the cilia.  相似文献   

5.
6.
Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony.  相似文献   

7.
The effects of cilium length on the dynamics of cilia motion were investigated by high-speed video microscopy of uniciliated mutants of the swimming alga, Chlamydomonas reinhardtii. Cells with short cilia were obtained by deciliating cells via pH shock and allowing cilia to reassemble for limited times. The frequency of cilia beating was estimated from the motion of the cell body and of the cilium. Key features of the ciliary waveform were quantified from polynomial curves fitted to the cilium in each image frame. Most notably, periodic beating did not emerge until the cilium reached a critical length between 2 and 4 μm. Surprisingly, in cells that exhibited periodic beating, the frequency of beating was similar for all lengths with only a slight decrease in frequency as length increased from 4 μm to the normal length of 10–12 μm. The waveform average curvature (rad/μm) was also conserved as the cilium grew. The mechanical metrics of ciliary propulsion (force, torque, and power) all increased in proportion to length. The mechanical efficiency of beating appeared to be maximal at the normal wild-type length of 10–12 μm. These quantitative features of ciliary behavior illuminate the biophysics of cilia motion and, in future studies, may help distinguish competing hypotheses of the underlying mechanism of oscillation.  相似文献   

8.
Motile cilia in the airway epithelium are the engine for mucociliary clearance, the mechanism responsible for cleaning the airways from inhaled particles. Human airway epithelial cilia appear to have a slow constitutive rate of beating, driven by inherent and spontaneous dynein ATPase activity. Additionally, cilia can increase their beating frequency by activation of several different control mechanisms. One of these controllers is calcium. Its intracellular concentration is regulated by purinergic and acetylcholine receptors. Besides the rate regulatory effect of calcium on ciliary beat, calcium is also involved in synchronizing the beat among cilia of one single cell as well as between cilia on different cells. This article gives an overview of the complex effects of calcium on the beating of motile cilia in the airways.  相似文献   

9.
Mucus propelling cilia are excitable by many stimulants, and have been shown to increase their beating frequency up to threefold, by physiological extracellular stimulants, such as adenosine-triphosphate, acetylcholine, and others. This is thought to represent the evolutionary adaptation of mucociliary systems to the need of rapid and efficient cleansing the airways of foreign particles. However, the mucus transport velocity depends not only on the beat frequency of the cilia, but on their beat pattern as well, especially in the case of mucus bearing cilia that beat in a complex, three-dimensional fashion. In this study, we directly measured the force applied by live ciliary tissues with an atomic force microscope, and found that it increases linearly with the beating frequency. This implies that the arc swept by the cilia during their effective stroke remains unchanged during frequency increase, thus leading to a linear dependence of transport velocity on the beat frequency. Combining the atomic force microscope measurements with optical measurements, we have indications that the recovery stroke is performed on a less inclined plane, leading to an effective shortening of the overall path traveled by the cilia tip during this nontransporting phase of their beat pattern. This effect is observed to be independent of the type of stimulant (temperature or chemical), chemical (adenosine-triphosphate or acetylcholine), or concentration (1 μM-100 μM), indicating that this behavior may result from internal details of the cilium mechanical structure.  相似文献   

10.
Potential recordings made simultaneously from opposite ends of the cell indicate that the cytoplasmic compartment of P. caudatum is nearly isopotential. Measured decrements of the spread of steady-state potentials are in essential agreement with calculated decrements for a short cable model of similar dimensions and electrical constants. Action potentials and passively conducted pulses spread at rates of over 100 µm per msec. In contrast, metachronal waves of ciliary beat progress over the cell with velocities below 1 µm per msec. Thus, electrical activity conducted by the plasma membrane cannot account for the metachronism of ciliary beat. The electrical properties of Paramecium are responsible, however, for coordinating the reorientation of cilia (either beating or paralyzed by NiCl2) which occurs over the entire cell in response to current passed across the plasma membrane. In response to a depolarization the cilia assume an anteriorly directed orientation ("ciliary reversal" for backward locomotion). The cilia over the anterior half of the organism reverse more strongly and with shorter latency than the cilia of the posterior half. This was true regardless of the location of the polarizing electrode. Since the membrane potential was shown to be essentially uniform between both ends of the cell, the cilia of the anterior and posterior must possess different sensitivities to membrane potential.  相似文献   

11.
Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.  相似文献   

12.
This paper presents a simple and reasonable method for generating a phenomenological model of the internal mechanism of cilia. The model uses a relatively small number of parameters whose values can be obtained by fitting to ciliary beat shapes. Here, we use beat patterns observed in Paramecium. The forces that generate these beats are computed and fit to a simple functional form called the "engine." This engine is incorporated into a recently developed hydrodynamic model that accounts for interactions between neighboring cilia and between the cilia and the surface from which they emerge. The model results are compared to data on ciliary beat patterns of Paramecium obtained under conditions where the beats are two-dimensional. Many essential features of the motion, including several properties that are not built in explicitly, are shown to be captured. In particular, the model displays a realistic change in beat pattern and frequency in response to increased viscosity and to the presence of neighboring cilia in configurations such as rows of cilia and two-dimensional arrays of cilia. We found that when two adjacent model cilia start beating at different phases they become synchronized within several beat periods, as observed in experiments where two flagella are brought into close proximity. Furthermore, examination of various multiciliary configurations shows that an approximately antiplectic wave pattern evolves autonomously. This modeling evidence supports earlier conjectures that metachronism may occur, at least partially, as a self-organized phenomenon due to hydrodynamic interactions between neighboring cilia.  相似文献   

13.
Cilia are small organelles protruding from the cell surface that beat synchronously, producing biological transport. Despite intense research for over a century, the mechanisms underlying ciliary beating are still not well understood. Even the nature of the cytosolic molecules required for spontaneous and stimulated beating is debatable. In an effort to resolve fundamental questions related to cilia beating, we developed a method that integrates the whole-cell mode of the patch-clamp technique with ciliary beat frequency measurements on a single cell. This method enables to control the composition of the intracellular solution while the cilia remain intact, thus providing a unique tool to simultaneously investigate the biochemical and physiological mechanism of ciliary beating. Thus far, we investigated whether the spontaneous and stimulated states of cilia beating are controlled by the same intracellular molecular mechanisms. It was found that: (a) MgATP was sufficient to support spontaneous beating. (b) Ca(2+) alone or Ca(2+)-calmodulin at concentrations as high as 1 microM could not alter ciliary beating. (c) In the absence of Ca(2+), cyclic nucleotides produced a moderate rise in ciliary beating while in the presence of Ca(2+) robust enhancement was observed. These results suggest that the axonemal machinery can function in at least two different modes.  相似文献   

14.
Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8–4 body lengths s−1) that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton.  相似文献   

15.
Upon excision into spring water, the lateral cilia of the gill of the freshwater mussel Elliptio complanatus (Solander) stop beating, but 0.04 M potassium ion can activate the gill so that these cilia again beat with metachronal rhythm. One per cent osmium tetroxide quickly pipetted onto a fully activated gill fixes the lateral cilia in a pattern that preserves the form and arrangement of the metachronal wave, and permits the cilia to be studied with the electron microscope in all stages of their beat cycle. Changes are seen in the fixed active preparation that are not present in the inactive control, i.e., in the packing of the cilia, the position of the axis of the ciliary cross-section, and the diameter of the ring of peripheral filaments. Analysis of these parameters may lead to new correlations between ciliary fine structure and function.  相似文献   

16.
With an instrument that can record the motion of both cilia of the unicellular alga Chlamydomonas reinhardtii for many hours, the behavioral differences of its two cilia have been studied to determine their specific role in phototaxis. The organism was held on a fixed micropipette with the plane of ciliary beating rotated into the imaging plane of a quadrant photodetector. The responses to square-wave light patterns of a wide range of temporal frequencies were used to characterize the responses of each cilium. Eighty-one cells were examined showing an unexpectedly diverse range of responses. Plausible common signals for the linear and nonlinear signals from the cell body are suggested. Three independent ciliary measures--the beat frequency, stroke velocity, and phasing of the two cilia--have been identified. The cell body communicates to the cilia the direction of phototaxis the cell desires to go, the absolute light intensity, and the appropriate graded transient response for tracking the light source. The complexity revealed by each measure of the ciliary response indicates many independent variables are involved in the net phototactic response. In spite of their morphological similarity, the two cilia of Chlamydomonas respond uniquely. Probably the signals from the cell body fan out to independent pathways in the cilia. Each cilium modifies the input in its own way. The change in the pattern of the effective and recovery strokes of each cilium associated with negative phototaxis has been demonstrated and its involvement in phototactic turning is described.  相似文献   

17.
A number of studies have shown that temperature-dependent viscosity of the ambient water controls or strongly affects bio-mechanical activity such as beat frequency of water-pumping cilia in mussels and ascidians, swimming velocity of sperm cells, ciliates and small (micro- and meso-scale) aquatic organisms using cilia or small appendages for propulsion. Here we summarize results from the literature and from own studies on bio-mechanical activities in response to changing temperature or manipulated viscosity at constant temperature, both having the same change in kinematic viscosity. The survey is used to assess to what extent the response is purely physical/mechanical or biological. We argue that a power-law dependence of bio-mechanical activity (a) on kinematic viscosity (ν), i.e. a ∝ νm, should be applied to available data. Based on a general close matching of the response data to power-law regressions for viscosity manipulation (by means of an additive) and/or temperature we suggest that viscosity and not biological mechanisms often control the response. This knowledge enhances our basic understanding of the effect of temperature not only on the swimming and feeding behaviour of small aquatic organisms, but also on larger ciliary suspension-feeding bivalves and ascidians.  相似文献   

18.
Larvae of a brachiopod, Glottidia pyramidata, used at least two ciliary mechanisms to capture algal cells upstream from the lateral band of cilia that produces a feeding/swimming current. (1) Filtration: the larvae retained algal cells on the upstream (frontal) side of a sieve composed of a row of stationary laterofrontal cilia. Movement of the laterofrontal cilia could not be observed during capture or rejection of particles, but the laterofrontal cilia can bend toward the beating lateral cilia, a possible mechanism for releasing rejected particles from the ciliary sieve. (2) Localized changes of ciliary beat: the larvae may also concentrate particles by a local change in beat of lateral cilia in response to particles. The evidence is that the beat of lateral cilia changed coincident with captures of algal cells and that captured particles moved on paths consistent with a current redirected toward the frontal side of the tentacle by an induced local reversal of the lateral cilia. The change of beat of lateral cilia could have been an arrest rather than a reversal of ciliary beat, however. The similar ciliary bands in adult and larval lophophorates (brachiopods, phoronids, and bryozoans) suggest that these animals share a range of ciliary behaviours. The divergent accounts of ciliary feeding of lophophorates could be mostly the result of different authors observing different aspects of ciliary feeding.  相似文献   

19.
Automated measurement of ciliary beat frequency   总被引:1,自引:0,他引:1  
Measurements of ciliary beat frequency using video images are dependent on observer interpretation. To obtain objective estimates of ciliary beat frequency from video-image sequences, a computer-based method was developed. Regions of interest of video-image sequences were selected and digitized. Variations in numerical values representing light intensity resulting from cilia beating were extracted and analyzed using autocorrelation techniques. The ciliary beat frequencies obtained for 14 in vitro experiments on ciliated cells or epithelium from the frog palate (Rana catesbeiana) over the range of frequencies 2-25 Hz correlated well with independent observer measurements (r = 0.979). The addition of such computer-based methods to video observer-based systems allows more objective and efficient determinations of ciliary beat frequency.  相似文献   

20.
In quail oviduct epithelium, as in all metazoan and protozoan ciliated cells, cilia beat in a coordinated cycle. They are arranged in a polarized pattern oriented according to the anteroposterior axis of the oviduct and are most likely responsible for transport of the ovum and egg white proteins from the infundibulum toward the uterus. Orientation of ciliary beating is related to that of the basal bodies, indicated by the location of the lateral basal foot, which points in the direction of the active stroke of ciliary beating. This arrangement of the ciliary cortex occurs as the ultimate step in ciliogenesis and following the oviduct development. Cilia first develop in a random orientation and reorient later, simultaneously with the development of the cortical cytoskeleton. In order to know when the final orientation of basal bodies and cilia is determined in the course of oviduct development, microsurgical reversal of a segment of the immature oviduct was performed. Then, after hormone-induced development and ciliogenesis, ciliary orientation was examined in the inverted segment and in normal parts of the ciliated epithelium. In the inverted segment, orientation was reversed, as shown by a video recording of the direction of effective flow produced by beating cilia, by the three-dimensional bending forms of cilia immobilized during the beating cycle and screened by scanning electron microscopy, and by the position of basal body appendages as seen in thin sections by transmission electron microscopy. These results demonstrate that basal body and ciliary orientation are irreversibly determined prior to development by an endogenous signal present early in the cells of the immature oviduct, transmitted to daughter cells during the proliferative phase and expressed at the end of ciliogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号