首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sun SC  Wang ZB  Xu YN  Lee SE  Cui XS  Kim NH 《PloS one》2011,6(4):e18392
Mammalian oocyte meiotic maturation involves oocyte polarization and a unique asymmetric division, but until now, the underlying mechanisms have been poorly understood. Arp2/3 complex has been shown to regulate actin nucleation and is widely involved in a diverse range of processes such as cell locomotion, phagocytosis and the establishment of cell polarity. Whether Arp2/3 complex participates in oocyte polarization and asymmetric division is unknown. The present study investigated the expression and functions of Arp2/3 complex during mouse oocyte meiotic maturation. Immunofluorescent staining showed that the Arp2/3 complex was restricted to the cortex, with a thickened cap above the meiotic apparatus, and that this localization pattern was depended on actin. Disruption of Arp2/3 complex by a newly-found specific inhibitor CK666, as well as by Arpc2 and Arpc3 RNAi, resulted in a range of effects. These included the failure of asymmetric division, spindle migration, and the formation and completion of oocyte cytokinesis. The formation of the actin cap and cortical granule-free domain (CGFD) was also disrupted, which further confirmed the disruption of spindle migration. Our data suggest that the Arp2/3 complex probably regulates oocyte polarization through its effect on spindle migration, asymmetric division and cytokinesis during mouse oocyte meiotic maturation.  相似文献   

2.
The Arp2/3 complex, which nucleates actin filaments, comprises a stable assembly of seven-protein subunits including two actin-related proteins (Arp2 and Arp3). Previous work showed that Arp2/3 binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. In the present study, we show that the Arp2/3 complex is critical for cytokinesis during early embryonic development in porcine parthenotes. The Arp2/3 complex is concentrated at the cortex of each cell at the 1-, 2-, and 4-cell stages, and at the periphery at the morula stage. The amount of Arp2/3 significantly decreased at the blastocyst stage in parthenogenetically activated porcine embryos. Inhibition of the Arp2/3 complex in the pig embryos by the Arp2/3-specific inhibitor CK666 resulted in abnormal cell division, a decrease in developmental rate and total cell numbers, and an increase in the ratio of trophectoderm cell number to inner cell mass number in blastocyst-stage embryos. In addition, 4-cell stage embryos subjected to CK666 treatment exhibited significantly decreased expression of ZGA genes (Pou5f1, Sox2, and Nanog), suggesting that the Arp2/3 complex plays an important role in early porcine embryo development. Thus, our data demonstrate that the Arp2/3 complex is required for early embryonic development in pigs and appears to regulate the expression of pluripotency genes.  相似文献   

3.
4.
Polar body extrusion during oocyte maturation is critically dependent on asymmetric positioning of the meiotic spindle, which is established through migration of the meiosis I (MI) spindle/chromosomes from the oocyte interior to a subcortical location. In this study, we show that MI chromosome migration is biphasic and driven by consecutive actin-based pushing forces regulated by two actin nucleators, Fmn2, a formin family protein, and the Arp2/3 complex. Fmn2 was recruited to endoplasmic reticulum structures surrounding the MI spindle, where it nucleated actin filaments to initiate an initially slow and poorly directed motion of the spindle away from the cell center. A fast and highly directed second migration phase was driven by actin-mediated cytoplasmic streaming and occurred as the chromosomes reach a sufficient proximity to the cortex to activate the Arp2/3 complex. We propose that decisive symmetry breaking in mouse oocytes results from Fmn2-mediated perturbation of spindle position and the positive feedback loop between chromosome signal-induced Arp2/3 activation and Arp2/3-orchestrated cytoplasmic streaming that transports the chromosomes.  相似文献   

5.
The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division.  相似文献   

6.
Dynamic remodeling of the actin cytoskeleton plays an essential role in cell migration and various signaling processes in living cells. One of the critical factors that controls the nucleation of new actin filaments in eukaryotic cells is the actin-related protein 2/3 (Arp2/3) complex. Recently, two novel classes of small molecules that bind to different sites on the Arp2/3 complex and inhibit its ability to nucleate F-actin have been discovered and described. The current study aims at investigating the effects of CK-0944666 (CK-666) and its analogs (CK-869 and inactive CK-689) on the reorganization of the actin microfilaments in the cortical collecting duct cell line, M-1. We show that treatment with CK-666 and CK869 results in the reorganization of F-actin and drastically affects cell motility rate. The concentrations of the compounds used in this study (100–200 μM) neither cause loss of cell viability nor influence cell shape or monolayer integrity; hence, the effects of described compounds were not due to structural side effects. Therefore, we conclude that the Arp2/3 complex plays an important role in cell motility and F-actin reorganization in M-1 cells. Furthermore, CK-666 and its analogs are useful tools for the investigation of the Arp2/3 complex.  相似文献   

7.
SKAP2 (Src kinase-associated phosphoprotein 2), a substrate of Src family kinases, has been suggested to be involved in actin-mediated cellular processes. However, little is known about its role in mouse oocyte maturation. In this study, we thus investigated the expression, localization, and functions of SKAP2 during mouse oocyte asymmetric division. SKAP2 protein expression was detected at all developmental stages in mouse oocytes. Immunofluorescent staining showed that SKAP2 was mainly distributed at the cortex of the oocytes during maturation. Treatment with cytochalasin B in oocytes confirmed that SKAP2 was co-localized with actin. Depletion of SKAP2 by injection with specific short interfering RNA caused failure of spindle migration, polar body extrusion, and cytokinesis defects. Meanwhile, the staining of actin filaments at the oocyte membrane and in the cytoplasm was significantly reduced after these treatments. SKAP2 depletion also disrupted actin cap and cortical granule-free domain formation, and arrested a large proportion of oocytes at the telophase stage. Moreover, Arp2/3 complex and WAVE2 expression was decreased after the depletion of SKAP2 activity. Our results indicate that SKAP2 regulates the Arp2/3 complex and is essential for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes.  相似文献   

8.
During oocyte meiotic maturation, meiotic spindles form in the central cytoplasm and then migrate to the cortex to extrude a small polar body, forming a highly polarized cell through a process involving actin and actin-related molecules. The mechanisms underlying oocyte polarization are still unclear. The Arp2/3 complex regulates oocyte polarization but it is not known whether the WASP family of proteins, a known regulator of the Arp2/3 complex, is involved in this context. In the present study, the role of WASP family member WAVE2 in mouse oocyte asymmetric division was investigated. (1) WAVE2 mRNA and protein were detected during mouse oocyte meiosis. (2) siRNA-mediated and antibody-mediated disruption of WAVE2 resulted in the failure of chromosome congression, spindle formation, spindle positioning and polar body extrusion. (3) WAVE2 regulated actin-driven chromosome migration since chromosomes were arrested in the central cytoplasm by WAVE2 RNAi in the absence of microtubules. (4) Localization of γ-tubulin and MAPK was disrupted after RNAi, confirming the effect of WAVE2 on spindle formation. (5) Actin cap and cortical granule-free domain (CGFD) formation was also disrupted, further confirming the failure of oocyte polarization. Our data suggest that WAVE2 regulates oocyte polarization by regulating meiotic spindle, peripheral positioning, probably via an actin-mediated pathway, and is involved in polar body emission during mouse oocyte meiotic maturation.  相似文献   

9.
Recent studies have investigated the dendritic actin cytoskeleton of the cell edge''s lamellipodial (LP) region by experimentally decreasing the activity of the actin filament nucleator and branch former, the Arp2/3 complex. Here we extend these studies via pharmacological inhibition of the Arp2/3 complex in sea urchin coelomocytes, cells that possess an unusually broad LP region and display correspondingly exaggerated centripetal flow. Using light and electron microscopy, we demonstrate that Arp2/3 complex inhibition via the drug CK666 dramatically altered LP actin architecture, slowed centripetal flow, drove a lamellipodial-to-filopodial shape change in suspended cells, and induced a novel actin structural organization during cell spreading. A general feature of the CK666 phenotype in coelomocytes was transverse actin arcs, and arc generation was arrested by a formin inhibitor. We also demonstrate that CK666 treatment produces actin arcs in other cells with broad LP regions, namely fish keratocytes and Drosophila S2 cells. We hypothesize that the actin arcs made visible by Arp2/3 complex inhibition in coelomocytes may represent an exaggerated manifestation of the elongate mother filaments that could possibly serve as the scaffold for the production of the dendritic actin network.  相似文献   

10.
Mammalian oocyte maturation is distinguished by highly asymmetric meiotic divisions during which a haploid female gamete is produced and almost all the cytoplasm is maintained in the egg for embryo development. Actin-dependent meiosis I spindle positioning to the cortex induces the formation of a polarized actin cap and oocyte polarity, and it determines asymmetric divisions resulting in two polar bodies. Here we investigate the functions of Cdc42 in oocyte meiotic maturation by oocyte-specific deletion of Cdc42 through Cre-loxP conditional knockout technology. We find that Cdc42 deletion causes female infertility in mice. Cdc42 deletion has little effect on meiotic spindle organization and migration to the cortex but inhibits polar body emission, although homologous chromosome segregation occurs. The failure of cytokinesis is due to the loss of polarized Arp2/3 accumulation and actin cap formation; thus the defective contract ring. In addition, we correlate active Cdc42 dynamics with its function during polar body emission and find a relationship between Cdc42 and polarity, as well as polar body emission, in mouse oocytes.  相似文献   

11.
The inhibitor Y-27632 is a specific selective inhibitor of Rho-associated protein kinases (ROCKs), which are downstream effectors of Rho guanosine triphosphatease (GTPases) and regulate Rho-associated cellular functions, including actin cytoskeletal organization. Little is known regarding the effects of Y-27632 on mammalian oocyte maturation. In the present study, we investigated the effects of Y-27632 on porcine oocyte meiosis and possible regulatory mechanisms of ROCK during porcine oocyte maturation. We found that ROCK accumulated not only at spindles, but also at the cortex in porcine oocytes. Y-27632 treatment reduced ROCK expression, and inhibited porcine oocyte meiotic maturation, which might be because of the impairment of actin expression and actin-related spindle positioning. Y-27632 treatment also disrupted the formation of actin cap and cortical granule-free domain, which further confirmed a spindle positioning failure. Thus, Y-27632 has significant effects on the meiotic competence of mammalian oocytes by reducing ROCK expression, and the regulation is related to its effects on actin-mediated spindle positioning.  相似文献   

12.
Tropomyosins are actin-binding cytoskeletal proteins that play a pivotal role in regulating the function of actin filaments in muscle and non-muscle cells; however, the roles of non-muscle tropomyosins in mouse oocytes are unknown. This study investigated the expression and functions of non-muscle tropomyosin (Tpm3) during meiotic maturation of mouse oocytes. Tpm3 mRNA was detected at all developmental stages in mouse oocytes. Tpm3 protein was localized at the cortex during the germinal vesicle and germinal vesicle breakdown stages. However, the overall fluorescence intensity of Tpm3 immunostaining was markedly decreased in metaphase II oocytes. Knockdown of Tpm3 impaired asymmetric division of oocytes and spindle migration, considerably reduced the amount of cortical actin, and caused membrane blebbing during cytokinesis. Expression of a constitutively active cofilin mutant and Tpm3 overexpression confirmed that Tpm3 protects cortical actin from depolymerization by cofilin. The data indicate that Tpm3 plays crucial roles in maintaining cortical actin integrity and asymmetric cell division during oocyte maturation, and that dynamic regulation of cortical actin by Tpm3 is critical to ensure proper polar body protrusion.  相似文献   

13.
Intersectins (ITSNs) have been shown to act as adaptor proteins that govern multiple cellular events via regulating Cdc42 activity. However, it remains to be determined whether the ITSN-Cdc42 pathway is functional in porcine oocytes. To address this question, we used a small molecule, ZCL278, to selectively disrupt the ITSN2-Cdc42 interaction. In the present study, we find that porcine oocytes exposed to ZCL278 are unable to completely progress through meiosis. Meanwhile, the spindle defects and chromosomal congression failure are frequently detected in these oocytes. In support of this, we observed the accumulated distribution of vesicle-like ITSN2 signals around the chromosome/spindle region during porcine oocyte maturation. In addition, our results also showed that inhibition of the ITSN-Cdc42 interaction impairs the actin polymerization in porcine oocytes. In summary, the findings support a model where ITSNs, through the interaction with Cdc42, modulates the assembly of meiotic apparatus and actin polymerization, consequently ensuring the orderly meiotic progression during porcine oocyte maturation.  相似文献   

14.
Verlhac MH 《Nature cell biology》2011,13(10):1183-1185
Successful completion of meiosis in vertebrate oocytes requires the localization and maintenance of the meiotic spindle at the cell cortex. Arp2/3-nucleated actin filaments are now shown to flow away from the cortex overlying the spindle, resulting in cytoplasmic streaming, which maintains the spindle in its asymmetric position.  相似文献   

15.
The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II-dependent contractility with consequent effects on growth cone motility.  相似文献   

16.
Juglone, a naphthoquinone isolated from many species of the Juglandaceae family, has been used in traditional Chinese medicine for centuries because of its antiviral, antibacterial, and antitumor activities. However, the toxicity of juglone has also been demonstrated. Here, we used porcine oocytes as a model to explore the effects of juglone on oocyte maturation and studied the impact of vitamin C (VC) administration on juglone exposure-induced meiosis defects. Exposure to juglone significantly restricted cumulus cell expansion and decreased the first polar body extrusion. In addition, juglone exposure disturbed spindle organization, actin assembly, and the distribution of mitochondria during oocyte meiosis, while the acetylation level of α-tubulin was also reduced. These defects were all ameliorated by VC administration. Our findings indicate that juglone exposure induced meiotic failure in porcine oocytes, while VC protected against these defects during porcine oocyte maturation by ameliorating the organization of the cytoskeleton and mitochondrial distribution.  相似文献   

17.
Cell division is inherently mechanical, with cell mechanics being a critical determinant governing the cell shape changes that accompany progression through the cell cycle. The mechanical properties of symmetrically dividing mitotic cells have been well characterized, whereas the contribution of cellular mechanics to the strikingly asymmetric divisions of female meiosis is very poorly understood. Progression of the mammalian oocyte through meiosis involves remodeling of the cortex and proper orientation of the meiotic spindle, and thus we hypothesized that cortical tension and stiffness would change through meiotic maturation and fertilization to facilitate and/or direct cellular remodeling. This work shows that tension in mouse oocytes drops about sixfold during meiotic maturation from prophase I to metaphase II and then increases ∼1.6-fold upon fertilization. The metaphase II egg is polarized, with tension differing ∼2.5-fold between the cortex over the meiotic spindle and the opposite cortex, suggesting that meiotic maturation is accompanied by assembly of a cortical domain with stiffer mechanics as part of the process to achieve asymmetric cytokinesis. We further demonstrate that actin, myosin-II, and the ERM (Ezrin/Radixin/Moesin) family of proteins are enriched in complementary cortical domains and mediate cellular mechanics in mammalian eggs. Manipulation of actin, myosin-II, and ERM function alters tension levels and also is associated with dramatic spindle abnormalities with completion of meiosis II after fertilization. Thus, myosin-II and ERM proteins modulate mechanical properties in oocytes, contributing to cell polarity and to completion of meiosis.  相似文献   

18.
Cdc42 and Rac1 Rho family GTPases, and their interacting protein IQGAP1 are the key regulators of cell polarity. We examined the role of Cdc42 and IQGAP1 in establishing the polarity of mouse oocyte and regulation of meiotic and mitotic divisions. We showed that Cdc42 was localized on the microtubules of meiotic and mitotic spindle and in the cortex of mouse oocytes and cleaving embryos. IQGAP1 was present in the cytoplasm and cortex of growing and fully-grown oocytes. During maturation it disappeared from the cortex and during meiotic and mitotic cytokinesis it concentrated in the contractile ring. Toxin B inhibition of the binding activity of Cdc42 changed the localization of IQGAP1, inhibited emission of the first polar body, and caused disappearance of the cortical actin without affecting the migration of meiotic spindle. This indicates, that in maturing oocytes accumulation of cortical actin is not indispensable for spindle migration. In zygotes treated with toxin B actin cytoskeleton was rearranged and the first and/or subsequent cytokinesis were inhibited. Our results indicate that Cdc42 acts upstream of IQGAP1 and is involved in regulation of cytokinesis in mouse oocytes and cleaving embryos, rather than in establishing the polarity of the oocyte.  相似文献   

19.
Cytoplasmic dynein is a family of cytoskeletal motor proteins that move towards the minus-end of the microtubules to perform functions in a variety of mitotic processes such as cargo transport, organelle positioning, chromosome movement and centrosome assembly. However, its specific roles during mammalian oocyte meiosis have not been fully defined. Herein, we investigated the critical events during porcine oocyte meiotic maturation after inhibition of dynein by Ciliobrevin D treatment. We found that oocyte meiotic progression was arrested when inhibited of dynein by showing the poor expansion of cumulus cells and decreased rate of polar body extrusion. Meanwhile, the spindle assembly and chromosome alignment were disrupted, accompanied by the reduced level of acetylated α-tubulin, indicative of weakened microtubule stability. Defective actin polymerization on the plasma membrane was also observed in dynein-inhibited oocytes. In addition, inhibition of dynein caused the abnormal distribution of cortical granules and precocious exocytosis of ovastacin, a cortical granule component, which predicts that ZP2, the sperm binding site in the zona pellucida, might be prematurely cleaved in the unfertilized dynein-inhibited oocytes, potentially leading to the fertilization failure. Collectively, our findings reveal that dynein plays a part in porcine oocyte meiotic progression by regulating the cytoskeleton dynamics including microtubule stability, spindle assembly, chromosome alignment and actin polymerization. We also find that dynein mediates the normal cortical granule distribution and exocytosis timing of ovastacin in unfertilized eggs which are the essential for the successful fertilization.  相似文献   

20.
Contributions of actin-related proteins (Arp) 2 and 3 nucleotide state to Arp2/3 complex function were tested using nucleotide-binding pocket (NBP) mutants in Saccharomyces cerevisiae. ATP binding by Arp2 and Arp3 was required for full Arp2/3 complex nucleation activity in vitro. Analysis of actin dynamics and endocytosis in mutants demonstrated that nucleotide-bound Arp3 is particularly important for Arp2/3 complex function in vivo. Severity of endocytic defects did not correlate with effects on in vitro nucleation activity, suggesting that a critical Arp2/3 complex function during endocytosis may be structural rather than catalytic. A separate class of Arp2 and Arp3 NBP mutants suppressed phenotypes of mutants defective for actin nucleation. An Arp2 suppressor mutant increased Arp2/3 nucleation activity. Electron microscopy of Arp2/3 complex containing this Arp2 suppressor identified a structural change that also occurs upon Arp2/3 activation by nucleation promoting factors. These data demonstrate the importance of Arp2 and Arp3 nucleotide binding for nucleating activity, and Arp3 nucleotide binding for maintenance of cortical actin cytoskeleton cytoarchitecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号