首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.  相似文献   

2.
Purpose

The present study aimed to explore the binding ability of acyl-CoA binding protein 2 to fatty acid acyl-CoA esters and its effect on Monascus pigment production in M. ruber CICC41233.

Methods

The Mracbp2 gene from M. ruber CICC41233 was cloned with a total DNA and cDNA as the templates through the polymerase chain reaction. The cDNA of the Mracbp2 gene fragment was ligated to expression vector pGEX-6P-1 to construct pGEX-MrACBP2, which was expressed in Escherichia coli BL21 to obtain the fusion protein GST-MrACBP2 and then measure the binding ability of fatty acid acyl-CoA esters. Additionally, the DNA of the Mracbp2 gene fragment was ligated to expression vector pNeo0380 to construct pNeo0380-MrACBP2, which was homologously over-expressed in M. ruber CICC41233 to evaluate Monascus pigment production and fatty acid.

Results

The cloned Mracbp2 gene of the DNA and cDNA sequence was 1525 bp and 1329 bp in length, respectively. The microscale thermophoresis binding assay revealed that the purified GST-MrACBP2 had the highest affinity for palmitoyl-CoA (Kd =70.57 nM). Further, the Mracbp2 gene was homologously overexpressed in M. ruber CICC41233, and a positive transformant M. ruber ACBP-E was isolated. In the Monascus pigments fermentation, the expression level of the Mracbp2 gene was increased by 1.74-fold after 2 days and 2.38-fold after 6 days. The palmitic acid content and biomass in M. ruber ACBP2-E were significantly lower than that in M. ruber CICC41233 on 2 days and 6 days. However, compared with M. ruber CICC41233, the yields of total pigment, ethanol-soluble pigment, and water-soluble pigment in M. ruber ACBP2-E increased by 63.61%, 71.61%, and 29.70%, respectively.

Conclusions

The purified fusion protein GST-MrACBP2 exhibited the highest affinity for palmitoyl-CoA. The Mracbp2 gene was overexpressed in M. ruber CICC41233, which resulted in a decrease in palmitic acid and an increase in Monascus pigments. Overall, the effect of MrACBP2 on the synthesis of fatty acid and Monascus pigment was explored. This paper explored the effect of MrACBP2 on the fatty acid synthesis and the synthesis of Monascus pigment. The results indicated the regulation of fatty acid synthesis could affect Monascus pigment synthesis, providing a novel strategy for improving the yield of Monascus pigment.

  相似文献   

3.
Monascus purpureus is a biopigment-producing fungi whose pigments can be used in many biotechnological and food industries. The growth kinetics of biopigment production were investigated in a liquid fermentation medium in a 5-l stirred tank bioreactor at 30°C, pH 7, for 8 days with 100 rpm agitation and 1.38 × 105 N/m2 aeration. Thai Monascus purpureus strains TISTR 3002, 3180, 3090 and 3385 were studied for color production, growth kinetics and productivity. Citrinin as a toxic metabolite was measured from the Monascus fermentation broth. The biopigment productions were detected from fermentation broth by scanning spectra of each strain produced. Results showed a mixture of yellow, orange and red pigments with absorption peaks of pigments occurring at different wavelengths for the four strains. It was found that for each pigment color, the color production from the strains increased in the order TISTR 3002, 3180, 3090, 3385 with 3385 production being approximately 10 times that of 3002. Similar results were found for growth kinetics and productivity. HPLC results showed that citrinin was not produced under the culture conditions of this study. The L*, a* and b* values of the CIELAB color system were also obtained for the yellow, orange and red pigments produced from the TISTR 3002, 3180, 3090 and 3385 strains. The colors of the pigments ranged from burnt umber to deep red.  相似文献   

4.
Monascus pigments (MPs) have been used as food colorants for several centuries in Asian countries. However, MP biosynthesis pathway is still a controversy, and only few related genes have been reported. In this study, the function of MpigE, a gene involved in MP biosynthesis in Monascus ruber M7, was analyzed. The results revealed that the disruption, complementation, and overexpression of MpigE in M. ruber M7 had very little effects on the growth and phenotypes except MPs. The MpigE deletion strain (?MpigE) just yielded four kinds of yellow MPs and very little red pigments, while the wild-type strain M. ruber M7 produced a MP complex mixture including three (orange, red, and yellow) categories of MP compounds. Two of the four yellow MPs produced by ?MpigE were the same as those yielded by M. ruber M7. The MpigE complementation strain (?MpigE::MpigE) recovered the ability to generate orange and red MPs as M. ruber M7. The MP types produced by the MpigE overexpression strain (M7::PtrpC-MpigE) were consistent with those of M. ruber M7, while the color value was about 1.3-fold as that of M. ruber M7 (3,129 U/g red kojic). For the production of citrinin, the disruption of MpigE almost had no influence on the strain, whereas the overexpression of MpigE made citrinin decrease drastically in YES fermentation. This work will make a contribution to the study on the biosynthesis pathway of MPs in M. ruber.  相似文献   

5.
红曲菌(Monascus spp.)是我国重要的药食同源微生物,红曲色素(Monascus pigments,MPs)是其主要次级代谢产物之一。有研究表明,甘油可促进红曲菌产MPs,但作用机制不明。以丛毛红曲菌(Monascus pilosus)MS-1为实验菌株,考察甘油与葡萄糖或蔗糖复合对红曲菌产MPs的影响。在不含碳源的合成培养基中,将甘油与葡萄糖或蔗糖复合,采用分光光度法和高效液相色谱法等分析MPs的产量和组分、生物量及发酵液pH。当甘油与葡萄糖复合,添加甘油后发酵液pH、生物量无显著变化(P0.05),总色价显著降低(P0.05)。当2 g/L或40 g/L甘油与蔗糖复合,发酵液pH显著降低而生物量及总色价显著增加(P0.05)。当40 g/L甘油与蔗糖复合时,总色价是仅以蔗糖为碳源时的16.5倍,且MPs同系物数量明显增多(P0.05)。在合成培养基条件下,甘油促进红曲菌产MPs具有碳源种类的选择性。该结果可为研究甘油影响红曲菌产MPs的作用机制提供参考,为甘油用于MPs生产提供依据。  相似文献   

6.
Production of citrinin by various species ofMonascus   总被引:1,自引:0,他引:1  
Summary The production of citrinin by variousMonascus species was determinated using various culture mediums and conditions. The maximal production was obtained in fermentor usingM. ruber with concentrations of 380 mg/l. Since citrinin is a toxic product, it is essential that the production of red pigments as food additives fromMonascus sp. avoid the occurrence of citrinin; so, we argue that some nitrogen sources are unfavorable to the production of citrinin.  相似文献   

7.
Monascus pigments produced by Monascus spp. are widely used as natural food colourants. Extractive fermentation technology can facilitate the secretion of intracellular Monascus pigments into extracellular non‐ionic surfactant micelle aqueous solution, so as to avoid the feedback inhibition and decomposition. In this study, behaviour of the trans‐membrane secretion of Monascus pigments was investigated using morphological and spectroscopic analyses. Laser scanning confocal microscopy (LSCM) traced that pigment secretion occurred through rapid trans‐membrane permeation in 4 min, with a simultaneous conversion in pigment characteristics. Approximately 50% of intracellular pigments (AU470) extracted to extracellular broth with 40 g l?1 Triton X‐100, indicating the capacity for pigment extraction was limited by the saturation concentrations of surfactant. Scanning electron microscope (SEM) and transmission electron microscope (TEM) imaging showed some damage in the cell wall but an intact cell membrane with a slightly increased mycelial diameter. However, the physiological properties of the cell membrane, including integrity, fluorescence intensity and permeability, were altered. A diagram was provided to demonstrate the behaviour of Monascus pigment secretion induced by Triton X‐100. This study lays a foundation for the further investigation of Monascus pigment metabolism and secretion in extractive fermentation.  相似文献   

8.
Cereal grains are normally used as solid substrates for the production of Monascus metabolites. However, solid fermentation in these substrates requires complex control systems, whereas in liquid culture the control of the fermentation is simpler and consequently significant reductions in fermentation times can be achieved. In the same way, the use of submerged culture can benefit the production of many secondary metabolites and decrease production costs by reducing the labour involved in solid-state methods. A flour composed of a mixed variety of Canadian hard wheat was used as sole nutrient source to produce the pigments of Monascus purpureus Went (IMI 210765). Supplementation with NH4Cl promoted biomass and orange dye formation, whereas the use of zinc sulphate favoured red dyes production. In submerged fermentations significant differences in final pigment yields were observed in the use of wheat-based broth at different concentrations in the presence of bran particles and/or gluten protein. It has been found that the viscosity of the broth had a significant effect on the growth morphology and production of pigments. Gluten-free wheat flour at concentrations of 3–5% was found to be the most suitable for liquid Monascus culture. The subsequent use of passive immobilization of Monascus served to enhance red pigment yields and to facilitate the downstream processing of the dyes.  相似文献   

9.
Summary New water-soluble red pigments were produced byMonascus sp. in a chemically defined fermentation medium containing glutamate as nitrogen source. They were isolated and characterized as glutamate derivatives of the well-known orangeMonascus pigments (monascorubrin and rubropunctatin). The new pigments have several advantages over the known redMonascus pigments (rubropunctamine and monascorubramine) including very high water-solubility, higher absorption coefficient, and greater resistance to decoloration by light. Adding glutamate, glycine or leucine to a resting-cell system led to the formation of specific water-soluble red pigments corresponding to the exogenous amino acid. The water-soluble red pigments produced by resting-cells have retention times identical to those of the corresponding red derivatives made chemically from the orange pigments in methanol-phosphate buffer at pH 7. The hydrophobicities of the amino acid sources correspond to the HPLC retention times of the red pigments derived from them.  相似文献   

10.
This study develops a new foodstuff, the Monascus-nata complex, which combines the functions of cholesterol-lowering monacolin k and bacterial dietary-fibre. Two Monascus strains, M. ruber and M. pilosus were fermented within cubical bacterial cellulose, nata de coco, obtained from Acetobacter fermented coconut juice, in a conditioned medium. The production levels and stability of monacolin k in the cultured Monascus-nata complex were determined to develop optimal fermentation conditions. The results indicated that a medium that comprised 5% glucose and 1.5% ammonium phosphate at pH 6.0–7.0 produced the most monacolin k (157 mg/l) for Monascus pilosus NCHU M-35. However, monosodium glutamate (MSG) and 0.001% ZnSO4 inhibited the intracellular accumulation of monacolin k. Monacolin k within the Monascus-nata complex was relatively resistant to washing and changes of pH, but thermal processing and freezing storage markedly reduced the amount present. This novel Monascus-nata complex is potentially a healthy foodstuff.  相似文献   

11.
Pigments produced by species of Monascus have been used to coloring rice, meat, sauces, wines and beers in East Asian countries. Monascus can produce orange (precursor), yellow and red pigments. Orange pigments have low solubility in culture media and when react with amino groups they become red and largely soluble. The orange pigments are an alternative to industrial pigment production because the low solubility facilitates the downstream operations. The aim of this work was to study the kinetic on the production of orange pigments by Monascus ruber CCT 3802. The shaking frequency of 300 rpm was favorable to production, whereas higher shaking frequencies showed negative effect. Pigment production was partially associated with cell growth, the critical dissolved oxygen concentration was between 0.894 and 1.388 mgO2 L?1 at 30 °C, and limiting conditions of dissolved oxygen decreased the production of orange pigments. The maintenance coefficient (mo) and the conversion factor of oxygen in biomass (Yo) were 18.603 mgO2 g x ?1  h?1 and 3.133 gx gO 2 ?1 and the consideration of these parameters in the oxygen balance to estimate the biomass concentration provided good fits to the experimental data.  相似文献   

12.
γ-Aminobutyric acid (GABA), a hypotensive agent, and monacolin K, a cholesterol-lowering drug, can be produced by Monascus spp. Under optimal culture conditions, the products of fermentation using Monascus spp. may serve as a multi-functional dietary supplement and can prevent heart disease. In this study, Monascus purpureus CCRC 31615, the strain with the highest amount of monacolin K, was identified from 16 strains using solid fermentation. Its GABA productivity was particularly high. Addition of sodium nitrate during solid-state fermentation of M. purpureus CCRC 31615 improved the productivity of monacolin K and GABA to 378 mg/kg and 1,267.6 mg/kg, respectively. GABA productivity increased further to 1,493.6 mg/kg when dipotassium hydrophosphate was added to the medium. Electronic Publication  相似文献   

13.
“Milking processing” describes the cultivation of microalgae in a water-organic solvent two-phase system that consists of simultaneous fermentation and secretion of intracellular product. It is usually limited by the conflict between the biocompatibility of the organic solvent to the microorganisms and the ability of the organic solvent to secret intracellular product into its extracellular broth. In the present work, submerged cultivation of Monascus in the nonionic surfactant Triton X-100 micelle aqueous solution for pigment production is exploited, in which the fungus Monascus remains actively growing. Permeabilization of intracellular pigments across the cell membrane and extraction of the pigments to the nonionic surfactant micelles of its fermentation broth occur simultaneously. “Milking” the intracellular pigments in the submerged cultivation of Monascus is a perstraction process. The perstractive fermentation of intracellular pigments has the advantage of submerged cultivation by secretion of the intracellular pigments to its extracellular broth and the benefit of extractive microbial fermentation by solubilizing the pigments into nonionic surfactant micelles. It is shown as the marked increase of the extracellular pigment concentration by the submerged cultivation of Monascus in the nonionic surfactant Triton X-100 micelle solution.  相似文献   

14.
Abstract

Crude glycerol is becoming a financial and environmental liability due to its surplus production from biodiesel industry, and its utilization as a fermentation feedstock for value-added chemicals production has been widely studied. In present work, the capacity of an endophytic fungus, Chaetomium globosum CGMCC 6882, using glycerol and crude glycerol for polysaccharide production was investigated. Results showed that the polysaccharide titers from glucose and glycerol were 1.85 and 3.8?g/L, respectively. Moreover, spore morphology of C. globosum CGMCC 6882 was favorable for polysaccharide production. Meanwhile, impurities in crude glycerol have no effect on polysaccharide production by C. globosum CGMCC 6882. Finally, characteristic results of polysaccharides produced from glucose, glycerol, and crude glycerol have suggested that metabolic flux might be a determinant factor on polysaccharide structure. Taken together, this research provided an innovative approach of utilizing crude glycerol produced from the biodiesel production process.  相似文献   

15.
The production of pigment by the molds belonging to the genus Monascus in a submerged culture was examined. The extracellular pigment was mainly studied. Monascus sp. No. 2 was found to be the most potent pigment producer. The optimum cultural conditions were: pH of the medium, 6.5; the temperature, 25°C; carbon sources, glucose or ethyl alcohol; nitrogen sources, polypeptone, yeast extract, monosodium glutamate or casamino acids. Glycine, l-threonine, l-arginine, l-alanine and l-tyrosine were found to be the most effective substances promoting pigment production.

Mycelial forms of this strain were correlated with pigment formation in submerged culture. As it grew into pellet type, the yield of pigment was at high level.

The Monascus-pigment in the fermentation liquid seemed to be firmly bound to the protein-like substances which made the pigment apparently soluble.  相似文献   

16.
For the purpose of mass producingMonascus red pigments optimum medium composition and environmental conditions were investigated in submerged flask cultures. The optimum carbon and nitrogen sources were determined to be 30 g/L of glucose and 1.5 g/L of monosodium glutamate (MSG). Of the three metals examined, Fe2+ showed the stronges stimulatory effect on pigment production and some stimulatory effect was also found in Mn2+. Optimum pH and agitation speed were determined to be 6.5 and 700 rpm, respectively. Under the optimum culture conditions batch fermentation showed that the maximum biomass yield and specific productivity of red pigments were 0.20 g DCW/g glucose and, 32.5 OD500 g DCW−1 h−1, respectively.  相似文献   

17.
In this study, perstractive fermentation of intracellular Monascus pigments in nonionic surfactant micelle aqueous solution had been studied. The permeability of cell membrane modified by nonionic surfactant might have influence on the rate of export of intracellular pigments into its extracellular broth while nearly no effect on the final extracellular pigment concentration. However, the solubilization of pigments in nonionic surfactant micelles strongly affected the final extracellular pigment concentration. The solubilization capacity of micelles depended on the kind of nonionic surfactant, the super‐molecule assembly structure of nonionic surfactant in an aqueous solution, and the nonionic surfactant concentration. Elimination of pigment degradation by export of intracellular Monascus pigments and solubilizing them into nonionic surfactant micelles was also confirmed experimentally. Thus, nonionic surfactant micelle aqueous solution is potential for replacement of organic solvent for perstractive fermentation of intracellular product.  相似文献   

18.
19.
The uptake of nutrients and export of intracellular products are essential issues of microbial fermentation. Two-stage of Monascus fermentation using monosodium glutamate (MSG) as the sole nitrogen source, i.e., the first stage microbial fermentation in an aqueous solution and the second stage perstractive fermentation in a nonionic surfactant micelle aqueous solution, was carried out under different initial pH conditions. The results revealed that extracellular pH influences on the uptake of MSG and the export of water-soluble red pigment derivates into its extracellular broth. On the other hand, the export of intracellular hydrophobic pigments is affected by perstractive fermentation in nonionic surfactant micelle aqueous solution. All of those factors exhibit strong effect on the profile of Monascus pigments. This information is key to controlling profile of extracellular Monascus pigments by perstractive fermentation in nonionic surfactant micelle aqueous solution.  相似文献   

20.
Monascus fungi are commonly used for a variety of food products in Asia, and are also known to produce some biologically active compounds. Since the use of Monascus is expected to increase in food industries, strain-level identification and management of Monascus will be needed in the near future. In the present study, random amplified polymorphic DNA (RAPD) analysis coupled with microchip electrophoresis was applied for this purpose. Evaluations of the analysis stability revealed that reproducible results could be obtained, although template DNA fragmentation could influence the resulting RAPD pattern. RAPD analysis using 15 Monascus strains consisting of four species, M. ruber, M. pilosus, M. purpureus, and M. kaoliang showed that each strain generated a unique RAPD pattern, which allows strain-level identification of Monascus. In addition, the phylogenetic tree constructed from RAPD patterns reflected M. ruberM. pilosus and M. purpureusM. kaoliang clusters inferred from both ITS and β-tubulin gene sequences, which indicated that the RAPD pattern could reflect their phylogenetic traits to a certain extent. On the other hand, RAPD analysis did not support the monophyletic clustering of the four Monascus species used in this study, which suggests the necessity of reexamination of species boundaries in Monascus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号