首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gastric pathogen Helicobacter pylori is one of the most genetically diverse of bacterial species. Much of its diversity stems from frequent mutation and recombination, preferential transmission within families and local communities, and selection during persistent gastric mucosal infection. MLST of seven housekeeping genes had identified multiple distinct H. pylori populations, including three from Africa: hpNEAfrica, hpAfrica1 and hpAfrica2, which consists of three subpopulations (hspWAfrica, hspCAfrica and hspSAfrica). Most detailed H. pylori population analyses have used strains from non-African countries, despite Africa''s high importance in the emergence and evolution of humans and their pathogens. Our concatenated sequences from seven H. pylori housekeeping genes from 44 Gambian patients (MLST) identified 42 distinct sequence types (or haplotypes), and no clustering with age or disease. STRUCTURE analysis of the sequence data indicated that Gambian H. pylori strains belong to the hspWAfrica subpopulation of hpAfrica1, in accord with Gambia''s West African location. Despite Gambia''s history of invasion and colonisation by Europeans and North Africans during the last millennium, no traces of Ancestral Europe1 (AE1) population carried by those people were found. Instead, admixture of 17% from Ancestral Europe2 (AE2) was detected in Gambian strains; this population predominates in Nilo-Saharan speakers of North-East Africa, and might have been derived from admixture of hpNEAfrica strains these people carried when they migrated across the Sahara during the Holocene humid period 6,000–9,000 years ago. Alternatively, shared AE2 ancestry might have resulted from shared ancestral polymorphisms already present in the common ancestor of sister populations hpAfrica1 and hpNEAfrica.  相似文献   

2.
Both anatomically modern humans and the gastric pathogen Helicobacter pylori originated in Africa, and both species have been associated for at least 100,000 years. Seven geographically distinct H. pylori populations exist, three of which are indigenous to Africa: hpAfrica1, hpAfrica2, and hpNEAfrica. The oldest and most divergent population, hpAfrica2, evolved within San hunter-gatherers, who represent one of the deepest branches of the human population tree. Anticipating the presence of ancient H. pylori lineages within all hunter-gatherer populations, we investigated the prevalence and population structure of H. pylori within Baka Pygmies in Cameroon. Gastric biopsies were obtained by esophagogastroduodenoscopy from 77 Baka from two geographically separated populations, and from 101 non-Baka individuals from neighboring agriculturalist populations, and subsequently cultured for H. pylori. Unexpectedly, Baka Pygmies showed a significantly lower H. pylori infection rate (20.8%) than non-Baka (80.2%). We generated multilocus haplotypes for each H. pylori isolate by DNA sequencing, but were not able to identify Baka-specific lineages, and most isolates in our sample were assigned to hpNEAfrica or hpAfrica1. The population hpNEAfrica, a marker for the expansion of the Nilo-Saharan language family, was divided into East African and Central West African subpopulations. Similarly, a new hpAfrica1 subpopulation, identified mainly among Cameroonians, supports eastern and western expansions of Bantu languages. An age-structured transmission model shows that the low H. pylori prevalence among Baka Pygmies is achievable within the timeframe of a few hundred years and suggests that demographic factors such as small population size and unusually low life expectancy can lead to the eradication of H. pylori from individual human populations. The Baka were thus either H. pylori-free or lost their ancient lineages during past demographic fluctuations. Using coalescent simulations and phylogenetic inference, we show that Baka almost certainly acquired their extant H. pylori through secondary contact with their agriculturalist neighbors.  相似文献   

3.
The origins of the inhabitants of Madagascar have not been fully resolved. Anthropological studies and preliminary genetic data point to two main sources of ancestry of the Malagasy, namely, Indonesian and African, with additional contributions from India and Arabia. The sickle-cell (beta s) mutation is found in populations of African and Indian origin. The frequency of the beta s-globin gene, derived from 1,425 Malagasy individuals, varies from 0 in some highland populations to .25 in some coastal populations. The beta s mutation is thought to have arisen at least five times, on the basis of the presence of five distinct beta s-associated haplotypes, each found in a separate geographic area. Twenty-five of the 35 Malagasy beta s haplotypes were of the typical "Bantu" type, 1 "Senegal" haplotype was found, and 2 rare or atypical haplotypes were observed; the remaining 7 haplotypes were consistent with the Bantu haplotype. The Bantu beta s mutation is thought to have been introduced into Madagascar by Bantu-speaking immigrants (colonists or slaves) from central or east Africa. The Senegal beta s mutation may have been introduced to the island via Portuguese naval explorers. This study provides the first definitive biological evidence that a major component of Malagasy ancestry is derived from African populations, in particular, Bantu-speaking Negroids. beta A haplotypes are also consistent with the claim for a significant African contribution to Malagasy ancestry but are also suggestive of Asian/Oceanic and Caucasoid admixture within the Malagasy population.  相似文献   

4.
An intricate history of human dispersal and geographic colonization has strongly affected the distribution of human pathogens. The pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serious neglected tropical diseases. Discrete genetic lineages of T. solium in Asia and Africa/Latin America are geographically disjunct; only in Madagascar are they sympatric. Linguistic, archaeological and genetic evidence has indicated that the people in Madagascar have mixed ancestry from Island Southeast Asia and East Africa. Hence, anthropogenic introduction of the tapeworm from Southeast Asia and Africa had been postulated. This study shows that the major mitochondrial haplotype of T. solium in Madagascar is closely related to those from the Indian Subcontinent. Parasitological evidence presented here, and human genetics previously reported, support the hypothesis of an Indian influence on Malagasy culture coinciding with periods of early human migration onto the island. We also found evidence of nuclear-mitochondrial discordance in single tapeworms, indicating unexpected cross-fertilization between the two lineages of T. solium. Analyses of genetic and geographic populations of T. solium in Madagascar will shed light on apparently rapid evolution of this organism driven by recent (<2,000 yr) human migrations, following tens of thousands of years of geographic isolation.  相似文献   

5.
When modern humans left Africa ca. 60,000 years ago (60 kya), they were already infected with Helicobacter pylori, and these bacteria have subsequently diversified in parallel with their human hosts. But how long were humans infected by H. pylori prior to the out-of-Africa event? Did this co-evolution predate the emergence of modern humans, spanning the species divide? To answer these questions, we investigated the diversity of H. pylori in Africa, where both humans and H. pylori originated. Three distinct H. pylori populations are native to Africa: hpNEAfrica in Afro-Asiatic and Nilo-Saharan speakers, hpAfrica1 in Niger-Congo speakers and hpAfrica2 in South Africa. Rather than representing a sustained co-evolution over millions of years, we find that the coalescent for all H. pylori plus its closest relative H. acinonychis dates to 88–116 kya. At that time the phylogeny split into two primary super-lineages, one of which is associated with the former hunter-gatherers in southern Africa known as the San. H. acinonychis, which infects large felines, resulted from a later host jump from the San, 43–56 kya. These dating estimates, together with striking phylogenetic and quantitative human-bacterial similarities show that H. pylori is approximately as old as are anatomically modern humans. They also suggest that H. pylori may have been acquired via a single host jump from an unknown, non-human host. We also find evidence for a second Out of Africa migration in the last 52,000 years, because hpEurope is a hybrid population between hpAsia2 and hpNEAfrica, the latter of which arose in northeast Africa 36–52 kya, after the Out of Africa migrations around 60 kya.  相似文献   

6.
《The ISME journal》2021,15(1):78
Helicobacter pylori is a common component of the human stomach microbiota, possibly dating back to the speciation of Homo sapiens. A history of pathogen evolution in allopatry has led to the development of genetically distinct H. pylori subpopulations, associated with different human populations, and more recent admixture among H. pylori subpopulations can provide information about human migrations. However, little is known about the degree to which some H. pylori genes are conserved in the face of admixture, potentially indicating host adaptation, or how virulence genes spread among different populations. We analyzed H. pylori genomes from 14 countries in the Americas, strains from the Iberian Peninsula, and public genomes from Europe, Africa, and Asia, to investigate how admixture varies across different regions and gene families. Whole-genome analyses of 723 H. pylori strains from around the world showed evidence of frequent admixture in the American strains with a complex mosaic of contributions from H. pylori populations originating in the Americas as well as other continents. Despite the complex admixture, distinctive genomic fingerprints were identified for each region, revealing novel American H. pylori subpopulations. A pan-genome Fst analysis showed that variation in virulence genes had the strongest fixation in America, compared with non-American populations, and that much of the variation constituted non-synonymous substitutions in functional domains. Network analyses suggest that these virulence genes have followed unique evolutionary paths in the American populations, spreading into different genetic backgrounds, potentially contributing to the high risk of gastric cancer in the region.Subject terms: Population genetics, Microbial genetics  相似文献   

7.
Gunn BF  Baudouin L  Olsen KM 《PloS one》2011,6(6):e21143
As a portable source of food, water, fuel, and construction materials, the coconut (Cocos nucifera L.) played a fundamental role in human migrations and the development of civilization across the humid tropics. Here we investigated the coconut's domestication history and its population genetic structure as it relates to human dispersal patterns. A sample of 1,322 coconut accessions, representing the geographical and phenotypic diversity of the species, was examined using ten microsatellite loci. Bayesian analyses reveal two highly genetically differentiated subpopulations that correspond to the Pacific and Indo-Atlantic oceanic basins. This pattern suggests independent origins of coconut cultivation in these two world regions, with persistent population structure on a global scale despite long-term human cultivation and dispersal. Pacific coconuts show additional genetic substructure corresponding to phenotypic and geographical subgroups; moreover, the traits that are most clearly associated with selection under human cultivation (dwarf habit, self-pollination, and "niu vai" fruit morphology) arose only in the Pacific. Coconuts that show evidence of genetic admixture between the Pacific and Indo-Atlantic groups occur primarily in the southwestern Indian Ocean. This pattern is consistent with human introductions of Pacific coconuts along the ancient Austronesian trade route connecting Madagascar to Southeast Asia. Admixture in coastal east Africa may also reflect later historic Arab trading along the Indian Ocean coastline. We propose two geographical origins of coconut cultivation: island Southeast Asia and southern margins of the Indian subcontinent.  相似文献   

8.
Helicobacter pylori is the main bacterial causative agent of gastroduodenal disorders and a risk factor for gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. The draft genomes of 10 closely related H. pylori isolates from the multiracial Malaysian population will provide an insight into the genetic diversity of isolates in Southeast Asia. These isolates were cultured from gastric biopsy samples from patients with functional dyspepsia and gastric cancer. The availability of this genomic information will provide an opportunity for examining the evolution and population structure of H. pylori isolates from Southeast Asia, where the East meets the West.  相似文献   

9.
Aim We investigate the directionality of mainland‐to‐island dispersals, focusing on a case study of an African‐Malagasy bat genus, Triaenops (Hipposideridae). Taxa include T. persicus from east Africa and three Triaenops species from Madagascar (T. auritus, T. furculus, and T. rufus). The evolution of this bat family considerably post‐dated the tectonic division of Madagascar from Africa, excluding vicariance as a viable hypothesis. Therefore, we consider three biogeographical scenarios to explain these species' current ranges: (A) a single dispersal from Africa to Madagascar with subsequent speciation of the Malagasy species; (B) multiple, unidirectional dispersals from Africa to Madagascar resulting in multiple, independent Malagasy lineages; or (C) early dispersal of a proto‐species from Africa to Madagascar, with later back‐dispersal of a descendant Malagasy taxon to Africa. Location East Africa, Madagascar, and the Mozambique Channel. Methods We compare the utility of phylogenetic and coalescent methodologies to address the question of directionality in a mainland‐to‐island dispersal event for recently diverged taxa. We also emphasize the application of biologically explicit demographic systems, such as the non‐equilibrium isolation‐with‐migration model. Here, these methods are applied to a four‐species haploid genetic data set, with simulation analyses being applied to validate this approach. Results Coalescent simulations favour scenario B: multiple, unidirectional dispersals from Africa to Madagascar resulting in multiple, independent Malagasy bat lineages. From coalescent dating, we estimate that the genus Triaenops was still a single taxon approximately 2.25 Ma. The most recent Africa to Madagascar dispersal occurred much more recently (c. 660 ka), and led to the formation of the extant Malagasy species, T. rufus. Main conclusions Haploid genetic data from four species of Triaenops are statistically most consistent with multiple, unidirectional dispersals from mainland Africa to Madagascar during the late Pleistocene.  相似文献   

10.
《Genomics》2021,113(6):3951-3966
Microbes evolve rapidly by modifying their genome through mutations or acquisition of genetic elements. Antimicrobial resistance in Helicobacter pylori is increasingly prevalent in India. However, limited information is available about the genome of resistant H. pylori isolated from India. Our pan- and core-genome based analyses of 54 Indian H. pylori strains revealed plasticity of its genome. H. pylori is highly heterogenous both in terms of the genomic content and DNA sequence homology of ARGs and virulence factors. We observed that the H. pylori strains are clustered according to their geographical locations. The presence of point mutations in the ARGs and absence of acquired genetic elements linked with ARGs suggest target modifications are the primary mechanism of its antibiotic resistance. The findings of the present study would help in better understanding the emergence of drug-resistant H. pylori and controlling gastric disorders by advancing clinical guidance on selected treatment regimens.  相似文献   

11.
The bacterium Helicobacter pylori colonizes the human stomach, with individual infections persisting for decades. The spread of the bacterium has been shown to reflect both ancient and recent human migrations. We have sequenced housekeeping genes from H. pylori isolated from 147 Iranians with well-characterized geographical and ethnic origins sampled throughout Iran and compared them with sequences from strains from other locations. H. pylori from Iran are similar to others isolated from Western Eurasia and can be placed in the previously described HpEurope population. Despite the location of Iran at the crossroads of Eurasia, we found no evidence that the region been a major source of ancestry for strains across the continent. On a smaller scale, we found genetic affinities between the H. pylori isolated from particular Iranian populations and strains from Turks, Uzbeks, Palestinians and Israelis, reflecting documented historical contacts over the past two thousand years.  相似文献   

12.

Background

Antibiotic combination therapy for Helicobacter pylori eradication must be adapted to local resistance patterns, but the epidemiology of H. pylori resistance to antibiotics is poorly documented in Africa. The aim was to determine the antibiotic resistance rates, as well as the associated molecular mechanisms, of strains isolated in Dakar, Senegal.

Methods

One hundred and eight H. pylori strains were isolated between 2007 and 2009 from 108 patients presenting with upper abdominal pain to the Gastroenterology Department of Le Dantec Hospital. Antimicrobial susceptibility testing was performed for amoxicillin, clarithromycin, metronidazole, levofloxacin and tetracyclin using the E-test method. Mutations in the 23S rRNA gene of clarithromycin-resistant strains and in gyrA and gyrB of levofloxacin-resistant strains were investigated.

Results

Isolates were characterized by no resistance to amoxicillin (0%), tetracycline (0%), and very low rate of resistance to clarithromycin (1%), but a high rate of resistance to metronidazole (85%). The clarithromycin-resistant strain displayed the A2143G mutation. A worrying rate of levofloxacin resistance was detected (15%). N87I and D91N were the most common mutations in the quinolone-resistance-determining region of gyrA.

Conclusions

The first-line empirical regimen for H. pylori eradication in Senegal should include clarithromycin. Increasing rates of fluoroquinolone resistance detected should discourage the use of levofloxacin-containing regimens without prior antimicrobial susceptibility testing.  相似文献   

13.
14.

Background

Linguistic, cultural and genetic characteristics of the Malagasy suggest that both Africans and Island Southeast Asians were involved in the colonization of Madagascar. Populations from the Indonesian archipelago played an especially important role because linguistic evidence suggests that the Malagasy language branches from the Southeast Barito language family of southern Borneo, Indonesia, with the closest language spoken today by the Ma’anyan. To test for a genetic link between Malagasy and these linguistically related Indonesian populations, we studied the Ma’anyan and other Indonesian ethnic groups (including the sea nomad Bajo) that, from their historical and linguistic contexts, may be modern descendants of the populations that helped enact the settlement of Madagascar.

Result

A combination of phylogeographic analysis of genetic distances, haplotype comparisons and inference of parental populations by linear optimization, using both maternal and paternal DNA lineages, suggests that Malagasy derive from multiple regional sources in Indonesia, with a focus on eastern Borneo, southern Sulawesi and the Lesser Sunda islands.

Conclusion

Settlement may have been mediated by ancient sea nomad movements because the linguistically closest population, Ma’anyan, has only subtle genetic connections to Malagasy, whereas genetic links with other sea nomads are more strongly supported. Our data hint at a more complex scenario for the Indonesian settlement of Madagascar than has previously been recognized.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1394-7) contains supplementary material, which is available to authorized users.  相似文献   

15.
Phylogenetic relationships of human populations in sub-Saharan Africa   总被引:1,自引:0,他引:1  
This study utilizes the GM/KM immunoglobulin allotype system to elucidate the phylogenetic relationships of sub-Saharan Africans. The importance of understanding the relatedness of these peoples stems from the sub-Saharan region being the possible birthplace of humans. Haplotype distributions were determined for 19 populations and compared using chi-square analysis. Published data of other sub-Saharan Africans and representative populations worldwide were also added for comparison. Genetic distances between populations were calculated based on haplotype frequencies, and genetic relationships were observed through principal components analysis. Data from the GM/KM system showed a genetic homogeneity of the Bantu populations, with some exceptions, supporting the possibility of a common origin of these peoples. The Malagasy appeared as a divergent population, most likely due to Southeast Asian/Austronesian admixture, as indicated by the presence of the GM*AF B haplotype. The Cape Coloured also showed a divergence, with their genetic structures containing Caucasoid and Khoisan contributions. Finally, the Mbuti Pygmies appeared genetically isolated and had the highest frequency of the GM*A B haplotype out of all studied populations.  相似文献   

16.
The settlement of Madagascar is one of the most unusual, and least understood, episodes in human prehistory. Madagascar was one of the last landmasses to be reached by people, and despite the island's location just off the east coast of Africa, evidence from genetics, language and culture all attests that it was settled jointly by Africans, and more surprisingly, Indonesians. Nevertheless, extremely little is known about the settlement process itself. Here, we report broad geographical screening of Malagasy and Indonesian genetic variation, from which we infer a statistically robust coalescent model of the island's initial settlement. Maximum-likelihood estimates favour a scenario in which Madagascar was settled approximately 1200 years ago by a very small group of women (approx. 30), most of Indonesian descent (approx. 93%). This highly restricted founding population raises the possibility that Madagascar was settled not as a large-scale planned colonization event from Indonesia, but rather through a small, perhaps even unintended, transoceanic crossing.  相似文献   

17.

Background

The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in order to better understand the evolutionary history of this subtype, which predominates today in the MSM population

Methodology/Principal Findings

We used a combination of phylogenetic analyses and a Bayesian coalescent-based approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is estimated to be in the early 80''s.

Conclusions/Significance

Our evolutionary reconstructions suggest that multiple subtype C viruses with a common ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses.  相似文献   

18.
Aim The Mascarene ridged frog, Ptychadena mascareniensis, is the only African amphibian species thought to occur on Madagascar and on the Seychelles and also Mascarene islands. We explored its phylogenetic relationships and intraspecific genetic differentiation to contribute to the understanding of transoceanic dispersal in amphibians. Methods Fragments of the mitochondrial 16S rRNA gene were sequenced from specimens collected over most of the distribution area of P. mascareniensis, including populations from Madagascar, Mascarenes and Seychelles. Results We identified five deeply divergent clades having pairwise divergences >5%, which probably all represent cryptic species in a P. mascareniensis complex. One of these seems to be restricted to Madagascar, the Mascarenes and the Seychelles. Sequences obtained from topotypic material (Réunion) were identical to the most widespread haplotype from Madagascar. The single Mauritian/Seychellean haplotype differed by only one mutation from a Malagasy haplotype. Main conclusions It is likely that the Mascarene and Seychellean populations were introduced from Madagascar by humans. In contrast, the absence of the Malagasy haplotypes from Africa and the distinct divergences among Malagasy populations (16 mutations in one divergent hapolotype from northern Madagascar) suggest that Madagascar was populated by Ptychadena before the arrival of humans c. 2000 years ago. Because Madagascar has been separated from Africa since the Jurassic, this colonization must have taken place by overseas rafting, which may be a more widespread dispersal mode in amphibians than commonly thought.  相似文献   

19.
Helicobacter pylori is a gram-negative pathogen that colonizes the stomachs of over half the world's population and causes a spectrum of gastric diseases including gastritis, ulcers, and gastric carcinoma. The H. pylori species exhibits unusually high levels of genetic variation between strains. Here we announce the complete genome sequence of H. pylori strain G27, which has been used extensively in H. pylori research.  相似文献   

20.
Leptospirosis is a bacterial zoonosis of major concern on tropical islands. Human populations on western Indian Ocean islands are strongly affected by the disease although each archipelago shows contrasting epidemiology. For instance, Mayotte, part of the Comoros Archipelago, differs from the other neighbouring islands by a high diversity of Leptospira species infecting humans that includes Leptospira mayottensis, a species thought to be unique to this island. Using bacterial culture, molecular detection and typing, the present study explored the wild and domestic local mammalian fauna for renal carriage of leptospires and addressed the genetic relationships of the infecting strains with local isolates obtained from acute human cases and with Leptospira strains hosted by mammal species endemic to nearby Madagascar. Tenrec (Tenrec ecaudatus, Family Tenrecidae), a terrestrial mammal introduced from Madagascar, is identified as a reservoir of L. mayottensis. All isolated L. mayottensis sequence types form a monophyletic clade that includes Leptospira strains infecting humans and tenrecs on Mayotte, as well as two other Malagasy endemic tenrecid species of the genus Microgale. The lower diversity of L. mayottensis in tenrecs from Mayotte, compared to that occurring in Madagascar, suggests that L. mayottensis has indeed a Malagasy origin. This study also showed that introduced rats (Rattus rattus) and dogs are probably the main reservoirs of Leptospira borgpetersenii and Leptospira kirschneri, both bacteria being prevalent in local clinical cases. Data emphasize the epidemiological link between the two neighbouring islands and the role of introduced small mammals in shaping the local epidemiology of leptospirosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号