首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The endoplasmic reticulum (ER) and mitochondria are interconnected intracellular organelles with vital roles in the regulation of cell signaling and function. While the ER participates in a number of biological processes including lipid biosynthesis, Ca2+ storage and protein folding and processing, mitochondria are highly dynamic organelles governing ATP synthesis, free radical production, innate immunity and apoptosis. Interplay between the ER and mitochondria plays a crucial role in regulating energy metabolism and cell fate control under stress. The mitochondria-associated membranes (MAMs) denote physical contact sites between ER and mitochondria that mediate bidirectional communications between the two organelles. Although Ca2+ transport from ER to mitochondria is vital for mitochondrial homeostasis and energy metabolism, unrestrained Ca2+ transfer may result in mitochondrial Ca2+ overload, mitochondrial damage and cell death. Here we summarize the roles of MAMs in cell physiology and its impact in pathological conditions with a focus on cardiovascular disease. The possibility of manipulating ER-mitochondria contacts as potential therapeutic approaches is also discussed.Subject terms: Cardiovascular diseases, Cardiomyopathies  相似文献   

2.
Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants.  相似文献   

3.
The endoplasmic reticulum (ER) is a functionally and morphologically complex cellular organelle largely responsible for a variety of crucial functions, including protein folding, maturation and degradation. Furthermore, the ER plays an essential role in lipid biosynthesis, dynamic Ca2+ storage, and detoxification. Malfunctions in ER‐related processes are responsible for the genesis and progression of many diseases, such as heart failure, cancer, neurodegeneration and metabolic disorders. To fulfill many of its vital functions, the ER relies on a sufficient energy supply in the form of adenosine‐5′‐triphosphate (ATP), the main cellular energy source. Despite landmark discoveries and clarification of the functional principles of ER‐resident proteins and key ER‐related processes, the mechanism underlying ER ATP transport remains somewhat enigmatic. Here we summarize ER‐related ATP‐consuming processes and outline our knowledge about the nature and function of the ER energy supply.  相似文献   

4.
Calcium pools,calcium entry,and cell growth   总被引:2,自引:0,他引:2  
The Ca2+ pump and Ca2+ release functions of intracellular Ca2+ pools have been well characterized. However, the nature and identity of Ca2+ pools as well as the physiological implications of Ca2+levels within them, have remained elusive. Ca2+ pools appear to be contained within the endoplasmic reticulum (ER); however, ER is a heterogeneous and widely distributed organelle, with numerous other functions than Ca2+ regulation. Studies described here center on trying to determine more about subcellular distribution of Ca2+ pools, the levels of Ca2+ within Ca2+ pools, and how these intraluminal Ca2+ levels may be physiologically related to ER function. Experiments utilizingin situ high resolution subcellular morphological analysis of ER loaded with ratiometric fluroescent Ca2+ dyes, indicate a wide distribution of inositol 1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pools within cells, and large changes in the levels of Ca2+ within pools following InsP3-mediated Ca2+ release. Such changes in Ca2+ may be of great significance to the translation, translocation, and folding of proteins in ER, in particular with respect to the function of the now numerously described luminal Ca2+-sensitive chaperonin proteins. Studies have also focussed on the physiological role of pool Ca2+ changes with respect to cell growth. Emptying of pools using Ca2+ pump blockers can result in cells entering a stable quiescent G0-like growth state. After treatment with the irreversible pump blocker, thapsigargin, cells remain in this state until they are stimulated with essential fatty acids whereupon new pump protein is synthesized, functional Ca2+ pools return, and cells reenter the cell cycle. During the Ca2+ pool-depleted growth-arrested state, cells express a Ca2+ influx channel that is distinct from the store-operated Ca2+ influx channels activated after short-term depletion of Ca2+ pools. Overall, these studies indicate that significant changes in intraluminal ER Ca2+ do occur and that such changes appear linked to alteration of essential ER functions as well as to the cell cycle-state and the growth of cells.  相似文献   

5.
The concentration of Ca2+ in the endoplasmic reticulum (ER) is critically important for maintaining its oxidizing environment as well as for maintaining luminal ATP levels required for chaperone activity. Therefore, local luminal Ca2+ concentrations and the dynamic Ca2+ flux between the different subcellular compartments are tightly controlled. Influx of Ca2+ into the ER is enabled by a reductive shift, which opens the sarcoendoplasmic reticulum calcium transport ATPase pump, building the Ca2+ gradient across the ER membrane required for ATP import. Meanwhile, Ca2+ leakage from the ER has been reported to occur via the Sec61 translocon following protein translocation. In this review, we provide an overview of the complex regulation of Ca2+ homeostasis, Ca2+ flux between subcellular compartments, and the cellular stress response (the unfolded protein response) induced upon dysregulated luminal Ca2+ metabolism. We also provide insight into the structure and gating mechanism at the Sec61 translocon and examine the role of ER-resident cochaperones in assisting the central ER-resident chaperone BiP in the control of luminal Ca2+ concentrations.  相似文献   

6.
《Cell calcium》2015,57(6):457-466
Mitochondrial Ca2+ plays a critical physiological role in cellular energy metabolism and signaling, and its overload contributes to various pathological conditions including neuronal apoptotic death in neurological diseases. Live cell mitochondrial Ca2+ imaging is an important approach to understand mitochondrial Ca2+ dynamics. Recently developed GCaMP genetically-encoded Ca2+ indicators provide unique opportunity for high sensitivity/resolution and cell type-specific mitochondrial Ca2+ imaging. In the current study, we implemented cell-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s) and used two-photon microscopy to image astrocytic and neuronal mitochondrial Ca2+ dynamics in culture, revealing Ca2+ uptake mechanism by these organelles in response to cell stimulation. Using these mitochondrial Ca2+ indicators, our results show that mitochondrial Ca2+ uptake in individual mitochondria in cultured astrocytes and neurons can be seen after stimulations by ATP and glutamate, respectively. We further studied the dependence of mitochondrial Ca2+ dynamics on cytosolic Ca2+ changes following ATP stimulation in cultured astrocytes by simultaneously imaging mitochondrial and cytosolic Ca2+ increase using mito-GCaMP5G and a synthetic organic Ca2+ indicator, x-Rhod-1, respectively. Combined with molecular intervention in Ca2+ signaling pathway, our results demonstrated that the mitochondrial Ca2+ uptake is tightly coupled with inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release from the endoplasmic reticulum and the activation of G protein-coupled receptors. The current study provides a novel approach to image mitochondrial Ca2+ dynamics as well as Ca2+ interplay between the endoplasmic reticulum and mitochondria, which is relevant for neuronal and astrocytic functions in health and disease.  相似文献   

7.
Store-operated calcium entry (SOCE) is a major mechanism for Ca2+ entry in excitable and non-excitable cells. The best-characterised store-operated current is ICRAC, but other currents activated by Ca2+ store depletion have also been reported. The recent identification of the proteins stromal interaction molecule 1 (STIM1) and Orai1 has shed new light on the nature and regulation of SOC channels. STIM1 has been presented as the endoplasmic reticulum (ER) Ca2+ sensor that communicates the content of the Ca2+ stores to the store-operated channels, a mechanism that involves redistribution of STIM1 to peripheral ER sites and co-clustering with the Ca2+ channel subunit, Orai1. Interestingly, TRPC1, which has long been proposed as a SOC channel candidate, associates with Orai1 and STIM1 in a ternary complex that appears to increase the variability of SOC currents available to modulate cell function.  相似文献   

8.
The myonemes in the marine pelagic protozoa Acantharia are contractile organelles involved in buoyancy regulation. It was previously shown that they can perform three kinds of movement: rapid contraction, slow undulation and slow relaxation. They consist of a periodically striated bundle of 2–4 nm nonactin filaments that are twisted in pairs and shortened by a coiling mechanism. After permeabilization or demembranation, contraction and relaxation can still be performed by varying Ca2+ concentration and ATP is not needed. In the present paper, we have studied the role of Ca2+ and inhibitors of energy production in intact cells. Our data suggest that; (i) the in vivo rapid contraction subsequent to mechanical or electrical stimulation is triggered by Ca2+ influx across the cell membrane; (ii) the slow contraction that takes place during the undulating movement depends on Ca2+ release provided by internal calcium stores; (iii) the rapid contraction as well as the progressive shortening that occurs during the slow undulating movement are caused by Ca2+ binding to the myoneme filaments; (iv) ATP is not directly involved in the saturation by Ca2+ of Ca2+ sensitive sites located along the myoneme microstrands; (v) regulation of the movements of Ca2+ within the cytoplasm depends mainly upon the alternative pathway of ATP production; (vi) calmodulin is presumably involved in this regulation. A tentative cytophysiologic interpretation of the mechanism of contractility is proposed.  相似文献   

9.
Verkhratsky  A.  Solovyova  N. 《Neurophysiology》2002,34(2-3):112-117
For many years, the endoplasmic reticulum (ER) was considered to be involved in rapid signalling events due to its ability to serve as a dynamic calcium store capable of accumulating large amounts of Ca2+ ions and of releasing them in response to physiological stimulation. Recent data significantly increased the importance of the ER as a signalling organelle, by demonstrating that the ER is associated with specific pathways regulating long-lasting adaptive processes and controlling cell survival. The ER lumen is enriched by enzymatic systems involved in protein synthesis and correcting post-translational folding of these proteins. The processes of post-translational protein processing are controlled by a class of specific enzymes known as chaperones, which in turn are regulated by the free Ca2+ concentration within the ER lumen ([Ca2+]L). At the same time, a high [Ca2+]L determines the ability of the ER to generate cytosolic Ca2+ signals. Thus, the ER is able to produce signals interacting within different temporal domains. Fast ER signals result from Ca2+ release via specific Ca2+-release channels and from rapid movements of Ca2+ ions within the ER lumen (calcium tunneling). Long-lasting signals involve Ca2+-dependent regulation of chaperones with subsequent changes in protein processing and synthesis. Any malfunctions in the ER Ca2+ homeostasis result in accumulation of unfolded proteins, which in turn activates several signalling systems aimed at appropriate compensatory responses or (in the case of severe ER dysregulation) in cellular pathology and death (ER stress responses). Thus, the Ca2+ ion emerges as a messenger molecule, which integrates various signals within the ER: fluctuations of the [Ca2+]L induced by signals originating at the level of the plasmalemma (i.e., Ca2+ entry or activation of the metabotropic receptors) regulate in turn protein synthesis and processing via generating secondary signalling events between the ER and the nucleus.  相似文献   

10.
STIM1 is a core component of the store‐operated Ca2+‐entry channel involved in Ca2+‐signaling with an important role in the activation of immune cells and many other cell types. In response to cell activation, STIM1 protein senses low Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) and activates the channel protein Orai1 in the plasma membrane by direct physical contact. The related protein STIM2 functions similar but its physiological role is less well defined. We found that STIM2, but not STIM1, contains a di‐lysine ER‐retention signal. This restricts the function of STIM2 as Ca2+ sensor to the ER while STIM1 can reach the plasma membrane. The intracellular distribution of STIM1 is regulated in a cell‐cycle‐dependent manner with cell surface expression of STIM1 during mitosis. Efficient retention of STIM1 in the ER during interphase depends on its lysine‐rich domain and a di‐arginine ER retention signal. Store‐operated Ca2+‐entry enhanced ER retention, suggesting that trafficking of STIM1 is regulated and this regulation contributes to STIM1s role as multifunctional component in Ca2+‐signaling.  相似文献   

11.
In pancreatic β-cells, ATP acts as a signaling molecule initiating plasma membrane electrical activity linked to Ca2+ influx, which triggers insulin exocytosis. The mitochondrial Ca2+ uniporter (MCU) mediates Ca2+ uptake into the organelle, where energy metabolism is further stimulated for sustained second phase insulin secretion. Here, we have studied the contribution of the MCU to the regulation of oxidative phosphorylation and metabolism-secretion coupling in intact and permeabilized clonal β-cells as well as rat pancreatic islets. Knockdown of MCU with siRNA transfection blunted matrix Ca2+ rises, decreased nutrient-stimulated ATP production as well as insulin secretion. Furthermore, MCU knockdown lowered the expression of respiratory chain complexes, mitochondrial metabolic activity, and oxygen consumption. The pH gradient formed across the inner mitochondrial membrane following nutrient stimulation was markedly lowered in MCU-silenced cells. In contrast, nutrient-induced hyperpolarization of the electrical gradient was not altered. In permeabilized cells, knockdown of MCU ablated matrix acidification in response to extramitochondrial Ca2+. Suppression of the putative Ca2+/H+ antiporter leucine zipper-EF hand-containing transmembrane protein 1 (LETM1) also abolished Ca2+-induced matrix acidification. These results demonstrate that MCU-mediated Ca2+ uptake is essential to establish a nutrient-induced mitochondrial pH gradient which is critical for sustained ATP synthesis and metabolism-secretion coupling in insulin-releasing cells.  相似文献   

12.
The spatial organisation of Orai channels and SERCA pumps within ER-PM junctions is important for enhancing the versatility and specificity of sub-cellular Ca2+ signals generated during store operated Ca2+ entry (SOCE). In this paper, we present a novel three dimensional spatio-temporal model describing Ca2+ dynamics in the ER-PM junction and sub-PM ER during SOCE. We investigate the role of Orai channel and SERCA pump location to provide insights into how these components shape the Ca2+ signals generated and affect ER refilling. We find that the organisation of Orai channels within the ER-PM junction controls the amplitude and shape of the Ca2+ profile but does not enhance ER refilling. The model shows that ER refilling is only weakly affected by the location of SERCA2b pumps within the ER-PM junction and that the placement of SERCA2a pumps within the ER-PM junction has much greater control over ER refilling.  相似文献   

13.
The endoplasmic reticulum (ER) and acidic organelles (endo-lysosomes) act as separate Ca2+ stores that release Ca2+ in response to the second messengers IP3 and cADPR (ER) or NAADP (acidic organelles). Typically, trigger Ca2+ released from acidic organelles by NAADP subsequently recruits IP3 or ryanodine receptors on the ER, an anterograde signal important for amplification and Ca2+ oscillations/waves. We therefore investigated whether the ER can signal back to acidic organelles, using organelle pH as a reporter of NAADP action. We show that Ca2+ released from the ER can activate the NAADP pathway in two ways: first, by stimulating Ca2+-dependent NAADP synthesis; second, by activating NAADP-regulated channels. Moreover, the differential effects of EGTA and BAPTA (slow and fast Ca2+ chelators, respectively) suggest that the acidic organelles are preferentially activated by local microdomains of high Ca2+ at junctions between the ER and acidic organelles. Bidirectional organelle communication may have wider implications for endo-lysosomal function as well as the generation of Ca2+ oscillations and waves.  相似文献   

14.
Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)–mitochondria communication, as it allows for a more efficient transfer of Ca2+ into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER–mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3 h of GLP-1 treatment, paralleled by increased Ca2+ transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca2+ increases in GLP-1 treated cells. Inhibiting both Ca2+ release from the ER and Ca2+ entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER–mitochondria communication in VSMC, resulting in higher mitochondrial activity.  相似文献   

15.
Cytosolic Ca2+ dynamics are important in the regulation of insulin secretion from the pancreatic β-cells within islets of Langerhans. These dynamics are sculpted by the endoplasmic reticulum (ER), which takes up Ca2+ when cytosolic levels are high and releases it when cytosolic levels are low. Calcium uptake into the ER is through sarcoendoplasmic reticulum Ca2+-ATPases, or SERCA pumps. Two SERCA isoforms are expressed in the β-cell: the high Ca2+ affinity SERCA2b pump and the low affinity SERCA3 pump. Recent experiments with islets from SERCA3 knockout mice have shown that the cytosolic Ca2+ oscillations from the knockout islets are characteristically different from those of wild type islets. While the wild type islets often exhibit compound Ca2+ oscillations, composed of fast oscillations superimposed on much slower oscillations, the knockout islets rarely exhibit compound oscillations, but produce slow (single component) oscillations instead. Using mathematical modeling, we provide an explanation for this difference. We also investigate the effect that SERCA2b inhibition has on the model β-cell. Unlike SERCA3 inhibition, we demonstrate that SERCA2b inhibition has no long-term effect on cytosolic Ca2+ oscillations unless a store-operated current is activated.  相似文献   

16.
Ca2+ is a signalling molecule involved in virtually every aspect of cell function. The endoplasmic reticulum (ER) is an important and dynamic organelle responsible for storage of the majority of intracellular Ca2+. Within the ER lumen are proteins that function as Ca2+ buffers and/or molecular chaperones including calreticulin, a multifunctional Ca2+-binding protein. Calreticulin-deficiency is lethal in utero due to impaired cardiac development. In the absence of calreticulin Ca2+ storage capacity in the ER and InsP3 receptor mediated Ca2+ release from ER are compromised. Remarkably, over-expression of constitutively active calcineurin in the hearts of calreticulin deficient mice rescues them from embryonic lethality and produces live calreticulin deficient animals. These observations provide first evidence that calreticulin is a key upstream regulator of calcineurin in the Ca2+-signalling cascade and they highlight the importance of ER during early stages of cellular commitment and tissue development during organogenesis.  相似文献   

17.
Photodynamic therapy (PDT), a photochemotherapeutic regimen used to treat several diseases, including cancer, exerts its effects mainly through induction of cell death. Using human epidermoid carcinoma A431 cells as a model, we previously showed that distinct cell death types could be triggered by protocols that selectively delivered Photofrin (a clinically approved photosensitizer) to different subcellular sites (Hsieh et al. [2003] J Cell Physiol 194: 363–375]. Here, the responses elicited by PDT in A431 cells containing intracellular organelle‐localized Photofrin were further characterized. Two prominent cell phenotypes were observed under these conditions: one characterized by perinuclear vacuole (PV) formation 2–8 h after PDT followed by cell recovery or shrinkage within 48 h, and a second characterized by typical apoptotic features appearing within 4 h after PDT. DCFDA‐sensitive reactive oxygen species formed proximal to PVs during the response to PDT, covering areas in which both endoplasmic reticulum (ER) and the Golgi complex were located. Biochemical analyses showed that Photofrin‐PDT also induced JNK activation and altered the protein secretion profile. A more detailed examination of PV formation revealed that PVs were derived from the ER. The alteration of ER structure induced by PDT was similar to that triggered by thapsigargin, an ER Ca2+‐ATPase inhibitor that perturbs Ca2+ homeostasis, suggesting a role for Ca2+ in the formation of PVs. Microtubule dynamics did not significantly affect PV formation. This study demonstrates that cells in which intracellular organelles are selectively loaded with Photofrin mount a novel response to ER stress induced by PDT. J. Cell. Biochem. 111: 821–833, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Calcium ions (Ca2+) play a key role in cell signaling across organisms. In plants, a plethora of environmental and developmental stimuli induce specific Ca2+ increases in the cytosol as well as in different cellular compartments including the endoplasmic reticulum (ER). The ER represents an intracellular Ca2+ store that actively accumulates Ca2+ taken up from the cytosol. By exploiting state-of-the-art genetically encoded Ca2+ indicators, specifically the ER-GCaMP6-210 and R-GECO1, we report the generation and characterization of an Arabidopsis (Arabidopsis thaliana) line that allows for simultaneous imaging of Ca2+ dynamics in both the ER and cytosol at different spatial scales. By performing analyses in single cells, we precisely quantified (1) the time required by the ER to import Ca2+ from the cytosol into the lumen and (2) the time required to observe a cytosolic Ca2+ increase upon the pharmacological inhibition of the ER-localized P-Type IIA Ca2+-ATPases. Furthermore, live imaging of mature, soil-grown plants revealed the existence of a wounding-induced, long-distance ER Ca2+ wave propagating in injured and systemic rosette leaves. This technology enhances high-resolution analyses of intracellular Ca2+ dynamics at the cellular level and in adult organisms and paves the way to develop new methodologies aimed at defining the contribution of subcellular compartments in Ca2+ homeostasis and signaling.

Dual color imaging allows the simultaneous analysis of calcium dynamics in the endoplasmic reticulum and cytosol from single cells to adult entire plants.  相似文献   

19.
Proper cell functioning requires precise coordination between mitochondrial ATP production and local energy demand. Ionic calcium (Ca2+) plays a central role in this coupling because it activates mitochondrial oxidative phosphorylation (OXPHOS) during hormonal and electrical cell stimulation. To determine how mitochondrial dysfunction affects cytosolic and mitochondrial Ca2+/ATP handling, we performed life-cell quantification of these parameters in fibroblast cell lines derived from healthy subjects and patients with isolated deficiency of the first OXPHOS complex (CI). In resting patient cells, CI deficiency was associated with a normal mitochondrial ([ATP]m) and cytosolic ([ATP]c) ATP concentration, a normal cytosolic Ca2+ concentration ([Ca2+]c), but a reduced Ca2+ content of the endoplasmic reticulum (ER). Furthermore, cellular NAD(P)H levels were increased, mitochondrial membrane potential was slightly depolarized, reactive oxygen species (ROS) levels were elevated and mitochondrial shape was altered. Upon stimulation with bradykinin (Bk), the peak increases in [Ca2+]c, mitochondrial Ca2+ concentration ([Ca2+]m), [ATP]c and [ATP]m were reduced in patient cells. In agreement with these results, ATP-dependent Ca2+ removal from the cytosol was slower. Here, we review the interconnection between cytosolic, endoplasmic reticular and mitochondrial Ca2+ and ATP handling, and summarize our findings in patient fibroblasts in an integrative model.  相似文献   

20.
K+-dependent Na+/Ca2+-exchanger isoform 4 (NCXK4) is one of the most broadly expressed members of the NCKX (K+-dependent Na+/Ca2+-exchanger) family. Recent data indicate that NCKX4 plays a critical role in controlling normal Ca2+ signal dynamics in olfactory and other neurons. Synaptic Ca2+ dynamics are modulated by purinergic regulation, mediated by ATP released from synaptic vesicles or from neighbouring glial cells. Previous studies have focused on modulation of Ca2+ entry pathways that initiate signalling. Here we have investigated purinergic regulation of NCKX4, a powerful extrusion pathway that assists in terminating Ca2+ signals. NCKX4 activity was stimulated by ATP through activation of the P2Y receptor signalling pathway. Stimulation required dual activation of PKC (protein kinase C) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). Mutating T312, a putative PKC phosphorylation site on NCKX4, partially prevented purinergic stimulation. These data illustrate how purinergic regulation can shape the dynamics of Ca2+ signalling by activating a signal damping and termination pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号