首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding dendritic cell (DC) subset functions should lead to the development of novel types of vaccine. Here we characterized expression of XC chemokine receptor 1 (XCR1) and its ligand, XCL1. Murine XCR1 was the only chemokine receptor selectively expressed in CD8α+ conventional DCs. XCL1 was constitutively expressed in NK cells, which contribute to serum XCL1 levels. NK and CD8+ T cells increased XCL1 production upon activation. These expression patterns were conserved in human blood cells, including the BDCA3+ DC subset. Thus, in human and mice, certain DC subsets should be chemotactic towards NK or activated CD8+ T cells through XCR1.  相似文献   

2.
Cytomegaloviruses (CMV) have developed various strategies to escape the immune system of the host. One strategy involves the expression of virus-encoded chemokines to modulate the host chemokine network. We have identified in the English isolate of rat CMV (murid herpesvirus 8 [MuHV8]) an open reading frame encoding a protein homologous to the chemokine XCL1, the only known C chemokine. Viral XCL1 (vXCL1), a glycosylated protein of 96 amino acids, can be detected 13 h postinfection in the supernatant of MuHV8-infected rat embryo fibroblasts. vXCL1 exclusively binds to CD4 rat dendritic cells (DC), a subset of DC that express the corresponding chemokine receptor XCR1. Like endogenous rat XCL1, vXCL1 selectively chemoattracts XCR1+ CD4 DC. Since XCR1+ DC in mice and humans have been shown to excel in antigen cross-presentation and thus in the induction of cytotoxic CD8+ T lymphocytes, the virus has apparently hijacked this gene to subvert cytotoxic immune responses. The biology of vXCL1 offers an interesting opportunity to study the role of XCL1 and XCR1+ DC in the cross-presentation of viral antigens.  相似文献   

3.

Background

Virus-specific cellular immune responses play a critical role in virus clearance during acute or chronic HBV infection. Currently, the commercially available HBV vaccine is combined with alum adjuvant, which stimulates mainly Th2 immune responses. Therefore, development of new therapeutic HBV vaccine adjuvants and immune strategies that also promote Th1 and CTL responses is urgently needed.

Methodology/Principal findings

To improve the immunity induced by the novel HBSS1 HBV vaccine, we evaluated the ability of adjuvants, including alum, CpG and polyriboinosinic polyribocytidylic acid [poly(I:C)], to enhance the response when boosted with the recombinant adenoviral vector vaccine rAdSS1. The immune responses to different adjuvant combinations were assessed in C57BL/6 mice by enzyme-linked immunosorbent assay (ELISA), ELISpot and cytokine release assays. Among the combinations tested, a HBV protein particle vaccine with CpG/alum and poly(I:C)/alum priming combinations accelerated specific seroconversion and produced high antibody (anti-PreS1, anti-S antibody) titres with a Th1 bias. After boosting with recombinant adenoviral vector vaccine rAdSS1, both groups produced a strong multi-antigen (S and PreS1)-specific cellular immune response. HBSS1 immunisation with poly(I:C)/alum priming also generated high-level CD4+ and CD8+ T cell responses in terms of Th1 cytokines (IFN-γand IL-2).

Conclusions

The protein-vaccine HBSS1 with mixed poly(I:C)/alum adjuvant priming, followed by a rAdSS1 vaccine boost, maximises specific antibody and Th1-biased cellular immune responses. This regime might prove useful in the development of HBV therapeutic vaccines. Furthermore, this promising strategy might be applied to vaccines against other persistent infections, such as human immunodeficiency virus and tuberculosis.  相似文献   

4.

Background

Toll-like receptor (TLR) agonists reportedly have potent antiviral and antitumor activities and may be a new kind of adjuvant for enhancing immune efficacy. Resiquimod (R848) is an imidazoquinoline compound with potent antiviral activity and functions through the TLR7/TLR8 MyD88-dependent signaling pathway. Polyinosinic-polycytidylic acid [poly(I:C)] is a synthetic analog of double-stranded RNA that induces the production of pro-inflammatory cytokines by the activation of NF-κB through TLR3. This study investigated the potential of R848 and poly(I:C) as an adjuvant 146S foot-and-mouth disease virus (FMDV) vaccine formulated with aluminum hydroxide (Al(OH)3).

Results

Antibody titers to FMDV and CD8+ T cells were markedly enhanced in mice immunized to 146S FMDV?+?Al(OH)3?+?R848?+?poly(I:C) compared with mice immunized to FMDV?+?ISA206. IFN-γ secretion substantially increased compared with IL-4 secretion by splenic T cells stimulated with FMDV antigens in vitro, suggesting that R848, poly(I:C), and with Al(OH)3 together biased the immune response toward a Th1-type direction.

Conclusions

These results indicated that the R848 and poly(I:C) together with Al(OH)3 enhanced humoral and cellular immune responses to immunization with 146S FMDV antigens. Thus, this new vaccine formulation can be used for FMDV prevention.  相似文献   

5.
Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals. The aim of the present study is to evaluate a plasmid DNA immunization system that expresses the FMDV/O/IRN/2007 VP1 gene and compare it with the conventional inactivated vaccine in an animal model. The VP1 gene was sub-cloned into the unique Kpn I and BamH I cloning sites of the pcDNA3.1+ and pEGFP-N1 vectors to construct the VP1 gene cassettes. The transfected BHKT7 cells with sub-cloned pEGFP-N1-VP1 vector expressed GFP-VP1 fusion protein and displayed more green fluorescence spots than the transfected BHKT7 cells with pEGFP-N1 vector, which solely expressed the GFP protein. Six mice groups were respectively immunized by the sub-cloned pcDNA3.1+-VP1 gene cassette as the DNA vaccine, DNA vaccine and PCMV-SPORT-GMCSF vector (as molecular adjuvant) together, conventional vaccine, PBS (as negative control), pcDNA3.1+ vector (as control group) and PCMV-SPORT vector that contained the GMCSF gene (as control group). Significant neutralizing antibody responses were induced in the mice which were immunized using plasmid vectors expressing the VP1 and GMCSF genes together, the DNA vaccine alone and the conventional inactivated vaccine (P<0.05). Co-administration of DNA vaccine and GMCSF gene improved neutralizing antibody response in comparison with administration of the DNA vaccine alone, but this response was the most for the conventional vaccine group. However, induction of humeral immunity response in the conventional vaccine group was more protective than for the DNA vaccine, but T-cell proliferation and IFN-γ concentration were the most in DNA vaccine with the GMCSF gene. Therefore the group that was vaccinated by DNA vaccine with the GMCSF gene, showed protective neutralizing antibody response and the most Th1 cellular immunity.  相似文献   

6.
Targeting dendritic cell-specific endocytic receptors using monoclonal antibodies fused to desired antigens is an approach widely used in vaccine development to enhance the poor immunogenicity of protein-based vaccines and to induce immune responses. Here, we engineered an anti-human DCIR recombinant antibody, which cross-reacts with the homologous cynomolgous macaque receptor and was fused via the heavy chain C-terminus to HIV Gagp24 protein (αDCIR.Gagp24). In vitro, αDCIR.Gagp24 expanded multifunctional antigen-specific memory CD4+ T cells recognizing multiple Gagp24 peptides from HIV-infected patient peripheral blood mononuclear cells. In non human primates, priming with αDCIR.Gagp24 without adjuvant elicited a strong anti-Gagp24 antibody response after the second immunization, while in the non-targeted HIV Gagp24 protein control groups the titers were weak. The presence of the double-stranded RNA poly(I:C) adjuvant significantly enhanced the anti-Gagp24 antibody response in all the groups and reduced the discrimination between the different vaccine groups. The avidity of the anti-Gagp24 antibody responses was similar with either αDCIR.Gagp24 or Gagp24 immunization, but increased from medium to high avidity in both groups when poly(I:C) was co-administered. This data provides a comparative analysis of DC-targeted and non-targeted proteins for their capacity to induce antigen-specific antibody responses in vivo. This study supports the further development of DCIR-based DC-targeting vaccines for protective durable antibody induction, especially in the absence of adjuvant.  相似文献   

7.
8.
XCL1, a C class chemokine also known as lymphotactin, is produced by T, NK, and NKT cells during infectious and inflammatory responses, whereas XCR1, the receptor of XCL1, is expressed by a dendritic cell subpopulation. The XCL1-XCR1 axis plays an important role in dendritic-cell-mediated cytotoxic immune response. It has been also shown that XCL1 and XCR1 are constitutively expressed in the thymus and regulate the thymic establishment of self-tolerance and the generation of regulatory T cells. This review summarizes the expression and function of XCL1 and XCR1 in the immune system.  相似文献   

9.
Background: It is well known that both heat shock protein (HSP) and Toll-like receptor (TLR)3 agonist polyinosinic:polycytidylic acid (poly(I:C)) are capable of promoting the antigen-specific immune responses. In the current study, we assessed whether the anti-tumor effects of the HPV16E749–57-based vaccine can be elevated by combined applications of poly(I:C) and oxygen-regulated protein 150 (ORP150) in a mouse cervical cancer model. Methods: Recombinant mouse ORP150 and HPV E749–57 peptide were combined to passively form the ORP150–E749–57 complex under heat shock conditions. The effects of ORP150–E749–57 complex plus poly(I:C) adjuvant on lymphocyte proliferation and functional cytotoxic T cells were investigated by methyl thiazolyl tetrazolium (MTT), ELISPOT, and non-radioactive cytotoxicity assays. Finally, the complex's therapeutic anti-tumor effects with and without adjuvant therapy were observed in a tumor challenge experiment. Results: This combination vaccine approach significantly enhanced the proliferation of splenocytes and induced strong E749–57-speci?c CTL responses. More importantly, the ORP150–E749–57 complex plus poly(I:C) vaccine format demonstrated more potent anti-tumor effects than ORP150–E749–57 complex alone or E749–57 plus poly(I:C) in TC-1 tumor-bearing mice. Conclusion: Both poly(I:C) and ORP150 chaperone can synergistically enhance the anti-tumor effects of the HPV16E749–57-based vaccine in vitro and in vivo. This strategy provides a platform for the design of a tumor therapeutic vaccine capable of inducing an effective anti-tumor immune response.  相似文献   

10.
DNA‐based vaccination is an attractive alternative for overcoming the disadvantages of inactivated virus vaccines; however, DNA vaccines alone often generate only weak immune responses. In this study, the efficacy of LMS as a chemical adjuvant on a DNA vaccine (pVIR‐P12A‐IL18‐3C) encoding the P1‐2A and 3C genes of the FMDV and swine IL‐18, which provides protection against FMDV challenge, was tested. All test pigs were administered booster vaccinations 28 days after the initial inoculation, and were challenged with 1000 ID50 FMDV O/NY00 20 days after the booster vaccination. Positive and negative control groups were inoculated with inactivated virus vaccine and PBS respectively. The DNA vaccine plus LMS induced greater humoral and cell‐mediated responses than the DNA vaccine alone, as evidenced by higher concentrations of neutralizing and specific anti‐FMDV antibodies, and by higher concentrations of T‐lymphocyte proliferation and IFN‐γ production, respectively. FMDV challenge revealed that the DNA vaccine plus LMS provided higher protection than the DNA vaccine alone. This study demonstrates that LMS may be useful as an adjuvant for improving the protective efficiency of DNA vaccination against FMDV in pigs.  相似文献   

11.
Li Z  Yi Y  Yin X  Zhang Z  Liu J 《PloS one》2008,3(5):e2273

Background

Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that causes severe economic loss in susceptible cloven-hoofed animals. Although the traditional inactivated vaccine has been proved effective, it may lead to a new outbreak of FMD because of either incomplete inactivation of FMDV or the escape of live virus from vaccine production workshop. Thus, it is urgent to develop a novel FMDV vaccine that is safer, more effective and more economical than traditional vaccines.

Methodology and Principal Findings

A recombinant silkworm baculovirus Bm-P12A3C which contained the intact P1-2A and 3C protease coding regions of FMDV Asia 1/HNK/CHA/05 was developed. Indirect immunofluorescence test and sandwich-ELISA were used to verify that Bm-P12A3C could express the target cassette. Expression products from silkworm were diluted to 30 folds and used as antigen to immunize cattle. Specific antibody was induced in all vaccinated animals. After challenge with virulent homologous virus, four of the five animals were completely protected, and clinical symptoms were alleviated and delayed in the remaining one. Furthermore, a PD50 (50% bovine protective dose) test was performed to assess the bovine potency of the subunit vaccine. The result showed the subunit vaccine could achieve 6.34 PD50 per dose.

Conclusion

The results suggest that this strategy might be used to develop the new subunit FMDV vaccine.  相似文献   

12.
Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. Current inactivated FMDV vaccines generate short-term, serotype-specific protection, mainly through neutralizing antibody. An improved understanding of the mechanisms of protective immunity would aid design of more effective vaccines. We have previously reported the presence of virus-specific CD8+ T cells in FMDV-vaccinated and -infected cattle. In the current study, we aimed to identify CD8+ T cell epitopes in FMDV recognized by cattle vaccinated with inactivated FMDV serotype O. Analysis of gamma interferon (IFN-γ)-producing CD8+ T cells responding to stimulation with FMDV-derived peptides revealed one putative CD8+ T cell epitope present within the structural protein P1D, comprising residues 795 to 803 of FMDV serotype O UKG/2001. The restricting major histocompatibility complex (MHC) class I allele was N*02201, expressed by the A31 haplotype. This epitope induced IFN-γ release, proliferation, and target cell killing by αβ CD8+ T cells, but not CD4+ T cells. A protein alignment of representative samples from each of the 7 FMDV serotypes showed that the putative epitope is highly conserved. CD8+ T cells from FMDV serotype O-vaccinated A31+ cattle recognized antigen-presenting cells (APCs) loaded with peptides derived from all 7 FMDV serotypes, suggesting that CD8+ T cells recognizing the defined epitope are cross-reactive to equivalent peptides derived from all of the other FMDV serotypes.Foot-and-mouth disease virus (FMDV) is a member of the family Picornaviridae, genus Aphthovirus. The FMDV particle consists of a positive-strand RNA molecule of approximately 8,500 nucleotides, enclosed within an icosahedral capsid. The genome encodes a unique polyprotein from which four structural proteins (P1A, P1B, P1C, and P1D; also referred to as VP4, VP2, VP3, and VP1, respectively) and nine nonstructural proteins are cleaved by viral proteases (48). FMDV shows a high genetic and antigenic variability, which is reflected in the seven serotypes and multiple subtypes reported so far (13). The virus causes a highly contagious infection in cloven-hoofed animals which is characterized by the formation of vesicles on the mouth, tongue, nose, and feet. In addition, most infected animals develop viremia.The virus elicits a rapid humoral response in both infected and vaccinated animals (26). Virus-specific antibodies protect animals in a serotype-specific manner against reinfection or against infection in the case of vaccination, and protection is generally correlated with high levels of neutralizing antibodies (38). Control of the disease is achieved by vaccination with a chemically inactivated whole-virus vaccine emulsified with adjuvant; however, this provides only short-term, serotype-specific protection (2). The introduction of this vaccine has been very successful in areas of the world where the disease is enzootic. However, one of the major difficulties in implementing vaccination is the inability to distinguish vaccinated animals from infected/recovered animals, which may still be shedding virus. Currently, a number of assays specifically developed for this purpose are being validated (29, 41), and the success of these assays is dependent on the use of purified vaccine antigen. A strategy using replication-deficient adenovirus 5 expressing FMDV antigens has been shown to provide early protection against homologous challenge (39).The identification and characterization of T cell epitopes are important for understanding protective immunity mediated by CD8+ and CD4+ T lymphocytes. Such T cell responses are pathogen specific and are restricted by major histocompatibility complex (MHC) class I and class II molecules, which present foreign peptides to the immune system (55, 56). The role of cellular immunity in the protection of animals from FMDV is still a matter of some controversy. Specific T cell-mediated antiviral responses have been observed in cattle and swine following either infection or vaccination (3, 7, 24). CD4+ T cell responses are suggested to play an important role in protection against FMDV, and published studies demonstrate the presence of FMDV-specific MHC class II-restricted responses in cattle and pigs (22, 24). CD4+ epitopes within both P1A and P1D proteins have recently been identified in cattle (23). We have recently reported the presence of FMDV-specific, MHC class I-restricted CD8+ T cell responses in cattle following infection or vaccination. Despite these observations, the significance of cell-mediated immune responses in protective immunity to FMDV remains unclear.Cattle MHC (bovine leukocyte antigen [BoLA]) is relatively complex, with variable haplotypes expressing one, two, or three of the six classical class I genes (6, 15). At present, about 60 full-length validated cattle MHC class I cDNA sequences have been identified (www.ebi.ac.uk/ipd/mhc/bola), and the haplotypes commonly found in the Holstein breed are well characterized. We have previously identified amino acid motifs present in peptides binding to BoLA class I alleles N*02101, N*02201, and N*01301 (20). More recently, a number of Theileria parva CD8+ T cell epitopes presented through these and additional class I alleles have been described (25). Identification of such epitopes allows detailed analysis of cellular immune responses to vaccination and infection.In the present study, we aimed to identify MHC class I-restricted CD8+ T cell epitopes within the FMDV capsid protein. Using a panel of overlapping peptides, we have identified a BoLA A31-restricted epitope that is similar in all FMDV serotypes.  相似文献   

13.
A time-course pathogenesis study was performed to compare and contrast primary foot-and-mouth disease virus (FMDV) infection following simulated-natural (intra-nasopharyngeal) virus exposure of cattle that were non-vaccinated or vaccinated using a recombinant adenovirus-vectored FMDV vaccine. FMDV genome and infectious virus were detected during the initial phase of infection in both categories of animals with consistent predilection for the nasopharyngeal mucosa. A rapid progression of infection with viremia and widespread dissemination of virus occurred in non-vaccinated animals whilst vaccinated cattle were protected from viremia and clinical FMD. Analysis of micro-anatomic distribution of virus during early infection by lasercapture microdissection localized FMDV RNA to follicle-associated epithelium of the nasopharyngeal mucosa in both groups of animals, with concurrent detection of viral genome in nasopharyngeal MALT follicles in vaccinated cattle only. FMDV structural and non-structural proteins were detected in epithelial cells of the nasopharyngeal mucosa by immunomicroscopy 24 hours after inoculation in both non-vaccinated and vaccinated steers. Co-localization of CD11c+/MHC II+ cells with viral protein occurred early at primary infection sites in vaccinated steers while similar host-virus interactions were observed at later time points in non-vaccinated steers. Additionally, numerous CD8+/CD3- host cells, representing presumptive natural killer cells, were observed in association with foci of primary FMDV infection in the nasopharyngeal mucosa of vaccinated steers but were absent in non-vaccinated steers. Immunomicroscopic evidence of an activated antiviral response at primary infection sites of vaccinated cattle was corroborated by a relative induction of interferon -α, -β, -γ and -λ mRNA in micro-dissected samples of nasopharyngeal mucosa. Although vaccination protected cattle from viremia and clinical FMD, there was subclinical infection of epithelial cells of the nasopharyngeal mucosa that could enable shedding and long-term persistence of infectious virus. Additionally, these data indicate different mechanisms within the immediate host response to infection between non-vaccinated and vaccinated cattle.  相似文献   

14.
To identify linear epitopes on the non-structural protein 3AB of foot-and-mouth disease virus (FMDV), BABL/c mice were immunized with the 3AB protein and splenocytes of BALB/c mice were fused with myeloma Sp2/0 cells. Two hybridoma monoclonal antibodies (mAbs) cell lines against the 3AB protein of foot-and-mouth disease virus (FMDV) were obtained, named C6 and E7 respectively. The microneutralization titer was 1:1024 for mAb C6, and 1:512 for E7. Both mAbs contain kappa light chains, and were of subclass IgG2b. In order to define the mAbs binding epitopes, the reactivity of these mAbs against FMDV were examined by indirect ELISA. The results showed that both mAbs can react with FMDV, but had no cross-reactivity with Swine Vesicular Disease (SVD) antigens. The titers in abdomen liquor were 1:5×106 for C6 and 1:2×106 for E7. In conclusion, the mAbs obtained from this study are specific for the detection of FMDV, can be used for etiological and immunological researches on FMDV, and have potential use in diagnosis and future vaccine designs.  相似文献   

15.
Fang M  Li J  Wang H  Yang M  Zhang Y  Zhou L  Wei H  Yang G  Yu Y  Wei X  Yu Y  Wang L  Wan M 《Biotechnology letters》2012,34(5):839-847
To develop recombinant epitope vaccines against foot-and-mouth disease virus (FMDV), genes coding for six recombinant proteins (rP1–rP6) consisting of different combinations of B cell and T cell epitope from VP1 capsid protein (VP1) of type O FMDV were constructed and the 3D structure of these proteins analyzed. This revealed a surface-exposed RGD sequence of B cell epitopes in all six recombinant proteins as that in VP1 of FMDV and rP1, rP2 and rP4 globally mimicked the backbone conformation of the VP1. rP1, rP2 and rP4 stimulated guinea pigs to produce higher level of neutralizing antibodies capable of protecting suckling mice against FMDV challenge. rP1 stimulated cattle to produce FMDV-neutralizing antibody. The data suggest that an efficient recombinant epitope vaccine against FMDV should share local similarities with the natural VP1 of FMDV.  相似文献   

16.
A large-scale vaccination experiment involving a total of 138 cattle was carried out to evaluate the potential of synthetic peptides as vaccines against foot-and-mouth disease. Four types of peptides representing sequences of foot-and-mouth disease virus (FMDV) C3 Argentina 85 were tested: A, which includes the G-H loop of capsid protein VP1 (site A); AT, in which a T-cell epitope has been added to site A; AC, composed of site A and the carboxy-terminal region of VP1 (site C); and ACT, in which the three previous capsid motifs are colinearly represented. Induction of neutralizing antibodies, lymphoproliferation in response to viral antigens, and protection against challenge with homologous infectious virus were examined. None of the tested peptides, at several doses and vaccination schedules, afforded protection above 40%. Protection showed limited correlation with serum neutralization activity and lymphoproliferation in response to whole virus. In 12 of 29 lesions from vaccinated cattle that were challenged with homologous virus, mutant FMDVs with amino acid substitutions at antigenic site A were identified. This finding suggests the rapid generation and selection of FMDV antigenic variants in vivo. In contrast with previous studies, this large-scale vaccination experiment with an important FMDV host reveals considerable difficulties for vaccines based on synthetic peptides to achieve the required levels of efficacy. Possible modifications of the vaccine formulations to increase protective activity are discussed.  相似文献   

17.
The generation of successful anticancer vaccines relies on the ability to induce efficient and long-lasting immune responses to tumor antigens. In this scenario, dendritic cells (DCs) are essential cellular components in the generation of antitumor immune responses. Thus, delivery of tumor antigens to specific DC populations represents a promising approach to enhance the efficiency of antitumor immunotherapies. In the present study, we employed antibody-antigen conjugates targeting a specific DC C-type lectin receptor. For that purpose, we genetically fused the anti-DEC205 monoclonal antibody to the type 16 human papillomavirus (HPV-16) E7 oncoprotein to create a therapeutic vaccine to treat HPV-associated tumors in syngeneic mouse tumor models. The therapeutic efficacy of the αDEC205-E7 mAb was investigated in three distinct anatomical tumor models (subcutaneous, lingual and intravaginal). The immunization regimen comprised two doses of the αDEC205-E7 mAb coadministered with a DC maturation stimulus (Polyinosinic:polycytidylic acid, poly (I:C)) as an adjuvant. The combined immunotherapy produced robust antitumor effects on both the subcutaneous and orthotopic tumor models, stimulating rapid tumor regression and long-term survival. These outcomes were related to the activation of tumor antigen-specific CD8+ T cells in both systemic compartments and lymphoid tissues. The αDEC205-E7 antibody plus poly (I:C) administration induced long-lasting immunity and controlled tumor relapses. Our results highlight that the delivery of HPV tumor antigens to DCs, particularly via the DEC205 surface receptor, is a promising therapeutic approach, providing new opportunities for the development of alternative immunotherapies for patients with HPV-associated tumors at different anatomical sites.  相似文献   

18.
The effects of Astragalus polysaccharides (APS) on the immune response in pigs immunized with foot-and-mouth disease virus (FMDV) vaccine were investigated. Fifteen pigs were randomly divided into five groups. Four groups were vaccinated with a FMDV inactivated vaccine. Pigs in three experimental groups were administered varying doses of APS (APS1, 5 mg/kg; APS2, 10 mg/kg; APS3, 20 mg/kg). The influence of APS on the number of CD3+CD4CD8+ cytotoxic T cells, CD3+CD4+CD8+ T helper memory cells, and CD3CD4CD8+ natural killer cells among peripheral blood lymphocytes (PBL) in the three APS groups were significant compared to the vaccine group. In vitro stimulation of PBL by Con A and LPS in APS groups induced a stronger proliferative response at 2 and 6 weeks post-inoculation (PI). APS markedly increased the titer of FMDV-specific antibody in a dose-dependent manner, and up-regulated mRNA expression of IFN-γ and IL-6. APS could potentially be used as an immunomodulator for a FMDV vaccine and provide better protection against FMDV.  相似文献   

19.
The protective capacities of a native double-domain activation-associated secreted protein (ndd-ASP)-based vaccine against the cattle intestinal nematode Cooperia oncophora has previously been demonstrated. However, protection analysis upon vaccination with a recombinantly produced antigen has never been performed. Therefore, the aim of the current study was to test the protective potential of a Pichia-produced double-domain ASP (pdd-ASP)-based vaccine against C. oncophora. Additionally, we aimed to compare the cellular and humoral mechanisms underlying the vaccine-induced responses by the native (ndd-ASP) and recombinant vaccines. Immunisation of cattle with the native C. oncophora vaccine conferred significant levels of protection after an experimental challenge infection, whereas the recombinant vaccine did not. Moreover, vaccination with ndd-ASP resulted in a higher proliferation of CD4-T cells both systemically and in the small intestinal mucosa when compared with animals vaccinated with the recombinant antigen. In terms of humoral response, although both native and recombinant vaccines induced similar levels of antibodies, animals vaccinated with the native vaccine were able to raise antibodies with greater specificity towards ndd-ASP in comparison with antibodies raised by vaccination with the recombinant vaccine, suggesting a differential immune recognition towards the ndd-ASP and pdd-ASP. Finally, the observation that animals displaying antibodies with higher percentages of recognition towards ndd-ASP also exhibited the lowest egg counts suggests a potential relationship between antibody specificity and protection.  相似文献   

20.
将构建的携带FMDV衣壳蛋白P1-2A和蛋白酶3C编码基因的重组鸡痘病毒活载体疫苗vUTAL3CP1以及编码FMDVP1-2A基因和猪IL-18基因的重组DNA疫苗pVIRIL18P1,分别以单独和混合的方式给豚鼠进行2次免疫,然后测定FMDV特异性结合抗体、中和抗体和T淋巴细胞增殖反应,并用250ID50的FMDV进行攻击,观察其保护效果。结果表明这2种基因工程疫苗均能诱导豚鼠产生特异性的体液免疫及细胞免疫应答。其中以vUTAL3CP1两次免疫组的效果最好,其诱导的抗体水平已接近于常规灭活疫苗,而细胞免疫水平则比后者高得多。攻击保护结果表明该组完全保护率可达3/4,而另外两组也具有一定保护效果。上述研究结果为进一步进行大动物免疫攻毒试验,并最终筛选出最佳疫苗和免疫程序奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号