首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human fetal Schwann cells support JC virus multiplication.   总被引:4,自引:1,他引:3       下载免费PDF全文
The human papovavirus JC virus (JCV), the etiologic agent of progressive multifocal leukoencephalopathy, displays a narrow host range for growth, preferentially infecting oligodendrocytes, the myelin-producing cells of the central nervous system. In tissue culture, human fetal brain cells have been used for JCV propagation because of their ability to support JCV virion production. In this study, we evidence that a human fetal cell type derived from the peripheral nervous system can be productively infected with JCV. Schwann cells, the cell type responsible for myelination in the peripheral nervous system, support the expression of JCV T antigen and JCV DNA replication. However, viral proteins and DNA replication were not detected either in dorsal root ganglion neurons or fibroblasts. These results extend the host range of JCV to include another cell of the glial lineage whose function is myelin formation.  相似文献   

2.
3.
Mechanisms underlying the unique survival property of human spiral neurons are yet to be explored. P75 (p75(NTR)) is a low affinity receptor for neurotrophins and is known to interact with Trk receptors to modulate ligand binding and signaling. Up-regulation of this receptor was found to be associated with apoptosis as well as with cell proliferation. Its distribution and injury-induced change in expression pattern in the cochlea have been mainly studied in rodents. There is still no report concerning p75(NTR) in post-natal human inner ear. We analyzed, for the first time, p75(NTR) expression in five freshly fixed human cochleae by using immunohistochemistry techniques, including myelin basic protein (MBP) as a myelin sheath marker and TrkB as the human spiral neuron marker, and by using thin optical sectioning of laser confocal microscopy. The inner ear specimens were obtained from adult patients who had normal pure tone thresholds before the surgical procedures, via a trans-cochlear approach for removal of giant posterior cranial fossa meningioma. The expression of p75(NTR) was investigated and localized in the glial cells, including Schwann cells and satellite glial cells in the Rosenthal canal, in the central nerve bundles within the modiolus, and in the osseous spiral lamina of the human cochleae. The biological significance of p75(NTR) in human cochlea is discussed.  相似文献   

4.
5.
The distribution of protein gene product (PGP) 9.5 was analyzed in the human fetal cochlea using the indirect immunofluorescence method. In the 12- and 14-week-old human fetuses, the cells of the greater epithelial ridge and the lesser epithelial ridge were overall labelled with PGP 9.5, while the stria vascularis and the Reissner's membrane did not exhibit any staining. Spiral ganglion cells and cochlear nerve fibers were labelled with PGP 9.5 and PGP 9.5-positive nerve fibers made contact with the basement membrane of the Corti primordium in the 12-week-old human fetus. These results suggest that PGP 9.5 might be used as a histological marker of maturation and innervation in the human cochlea.  相似文献   

6.
Summary The distribution of protein gene product (PGP) 9.5 was analyzed in the human fetal cochlea using the indirect immunofluorescence method. In the 12- and 14-week-old human fetuses, the cells of the greater epithelial ridge and the lesser epithelial ridge were overall labelled with PGP 9.5, while the stria vascularis and the Reissner's membrane did not exhibit any staining. Spiral ganglion cells and cochlear nerve fibers were labelled with PGP 9.5 and PGP 9.5-positive nerve fibers made contact with the basement membrane of the Corti primordium in the 12-week-old human fetus. These results suggest that PGP 9.5 might be used as a histological marker of maturation and innervation in the human cochlea.  相似文献   

7.
The expression of vimentin and the phosphorylated variant of high molecular weight neurofilament protein (NF-H) was studied in developing human fetal dorsal root ganglia and spinal cord. The technique used for examination of cryosections was double-label fluorescence with monoclonal antibodies. Both proteins were present in the nerve fibres inside the ganglia of 6- and 8-week-old embryos. During further development the expression of vimentin continued to increase in the satellite cells, but was found to be decreasing in the ganglion cells. Phosphorylated NF-H was found in the processes of ganglion cells, as well as in the perikarya at all developmental stages. In the spinal cord of 6- and 8-week-old embryos, phosphorylated NF-H protein was found in the longitudinal fibres of the marginal layer and in processes of the mantle zone; some of the fibres also contained vimentin. Later the co-expression of the two proteins ceased and vimentin was found only in glial and mesenchymal derivatives. Phosphorylated NF-H was located, at all developmental stages, in the axons of both white and grey matter, but not in the neuronal perikarya. The results indicate that phosphorylation of the NF-H in human dorsal root ganglia starts in the perikarya of the ganglion cells while in the ganglion cells of the spinal cord it takes place in the axons.  相似文献   

8.
Axons dictate whether or not they will become myelinated in both the central and peripheral nervous systems by providing signals that direct the development of myelinating glia. Here we identify the neurotrophin nerve growth factor (NGF) as a potent regulator of the axonal signals that control myelination of TrkA-expressing dorsal root ganglion neurons (DRGs). Unexpectedly, these NGF-regulated axonal signals have opposite effects on peripheral and central myelination, promoting myelination by Schwann cells but reducing myelination by oligodendrocytes. These findings indicate a novel role for growth factors in regulating the receptivity of axons to myelination and reveal that different axonal signals control central and peripheral myelination.  相似文献   

9.

Background

Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction.

Methodology/Principal Findings

Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (26 pA) synaptic stimuli.

Conclusions/Significance

Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea.  相似文献   

10.
The presence of nerve growth factor (NGF) was investigated in the rat cochlea from birth to the adult stage, using immunohistochemical techniques NGF-like protein could be detected in the organ of Corti from birth up to day 8 and located within the hair cells, above the nuclei. No NGF-like immunoreactivity could be detected in the spiral ganglion. These results suggest that NGF may have a neurotropic action in the developing rat cochlea.  相似文献   

11.
Surgical human cochlear specimens were obtained during the removal of large posterior cranial fossa meningioma by a transcochlear approach in which the cochlea was removed for maximal exposure of the tumor and protection of important structures, such as the brainstem, cranial nerves, and pivotal blood vessels. The cochlear tissue was fixed and cryo-sectioned for tyrosine kinase receptor B (TrkB) and brain-derived neurotrophic factor (BDNF) immunohistochemistry. TrkB receptor protein was expressed in both neuronal somata and the processes of human spiral ganglion neurons (SGNs). In the human organ of Corti, TrkB immunoreactivity was mainly present in nerve fibers underneath outer hair cells. BDNF expression was found neither in the organ of Corti nor in the spiral ganglion of human cochlea. For antibody specificity and for control and comparative purposes, TrkB immunocytochemistry was performed in primary cultures of cochlear neuron/glia from adult guinea pig. Confocal laser scanning microscopy showed that TrkB was homogeneously distributed in the cytoplasm of both neuronal somata and axons. Knowledge of the expression of TrkB receptor in human cochlea should help to determine the target structures for neuron preservation in hearing-impaired patients. Our results indicate that the regeneration of SGNs under pathological conditions can be enhanced with BDNF/TrkB-based pharmaceutical or genetic strategies.  相似文献   

12.
Following peripheral nerve injury perineuronal satellite cell reaction in the corresponding spinal ganglion is observed. The mechanisms underlying the glial responses to axon injury remain unknown. In an immunocytochemical and morphometric study we investigated satellite cell and macrophage responses in the rat L4 and L5 dorsal root ganglia (DRG) during the seven days immediately after unilateral sciatic nerve crush or transection. Nerve lesion induced a significant increase of glial fibrillary acidic protein-immunoreactive (GFAP-IR) cells in the ipsilateral L4-L5 DRGs. The number of ED1-positive macrophages significantly increased as well. We found no significant differences between the increases provoked by the two types of nerve lesion, but the macrophage activation was detected earlier after nerve transection than after crush. No correlation was detected between satellite cells and macrophages reactions over the 7 day period we examined. These findings support the idea that intercellular neuron-glial diffusible signals play a major role in DRG glial cell response to peripheral nerve lesion.  相似文献   

13.
Etiopathogenesis of migraine involves different structures of the central nervous system: the trigeminal nerve with nuclei located in the brain stem, vascular system, and the cerebral cortex as well as diverse mechanisms and pathological processes. The multidirectional action of purines in different cell types (blood vessels, neurons, and satellite glial cells) and through different types of purinergic receptors contributes to the etiopathogenesis of migraine pain. Adenosine triphosphate (ATP) and its derivatives are involved in initiation and propagation of migrenogenic signals in several ways: they participate in vasomotor mechanism, cortical spreading depression, and in fast transmission or cross-excitation based on the satellite glial cells in trigeminal ganglion. Contribution of purinergic signaling in the conduction of pain is realized through the activation of P1 and P2 receptors expressed widely in the central nervous system: on the neurons and glial cells as well as on the smooth muscles and endothelium in the vascular system. Therefore, the purinergic receptors can be an excellent target for pharmacologists constructing new antimigraine therapeutics. Moreover, the mechanisms facilitating ATP and adenosine degradation may prevent vasodilatation and thus avoid a secondary central sensitization during a migraine attack. Thus, agonists and antagonists of P receptors as well as ecto-enzymes metabolizing nucleotides/nucleosides could gain the growing attention as therapeutic agents.  相似文献   

14.
The structure of the lamina cribrosa (LC) and astrocytic density were examined in various species with and without intra-retinal myelination. Sections of optic nerve from various species were stained with Milligan's trichrome or antibodies to glial fibrillary acidic protein, myelin basic protein (MBP) and antibody O4. Marmoset, flying fox, cat, and sheep, which lack intraretinal myelination, were shown to possess a well-developed LC as well as a marked concentration of astrocytic filaments distal to the LC. Rat and mouse, which lack intraretinal myelination, lacked a well-developed LC but exhibited a marked concentration of astrocytic filaments in this region. Rabbit and chicken, which exhibit intraretinal myelination, lacked both a well-developed LC and a concentration of astrocytes at the retinal optic nerve junction (ROJ). A marked concentration of astrocytes at the ROJ of human fetuses was also apparent at 13 weeks of gestation, prior to myelination of the optic nerve; in contrast, the LC was not fully developed even at birth. This concentration of astrocytes was located distal to O4 and MBP immunoreactivity in human optic nerve, and coincided with the site of initial myelination of ganglion cell axons in marmoset and rat. Myelination proceeded from the chiasm towards the retinal end of the human optic nerve. Moreover, the outer limit of oligodendrocyte precursor cells (OPC) migration into the rabbit retina was restricted by the outer limit of astrocyte spread. These observations indicate that a concentration of astrocytic filaments at the ROJ is coincident with the absence of intraretinal myelination. Differential expression of tenascin-C by astrocytes at the ROJ appears to contribute to the molecular barrier to OPC migration (see Bartsch et al., 1994), while expression of the homedomain protein Vax 1 by glial cells at the optic nerve head appears to inhibit migration of retinal pigment epithelial cells into the optic nerve (see Bertuzzi et al., 1999). These observations combined with our present comparative and developmental data lead us to suggest that the astrocytes at the ROJ serve to regulate cellular traffic into and out of the retina.  相似文献   

15.
Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell-derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron-specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64-98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal's canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration.  相似文献   

16.
Recent findings have pointed out the role of neurotrophic factors in the survival and maintenance of neurons of the auditory system. Basic fibroblast growth factor (bFGF, FGF-2) is a potent neurotrophic molecule whose actions can be seen in the central and peripheral nervous systems. In the present study, FGF-2 immunoreactivity was analyzed in the auditory pathways of the adult rat, employing a well-characterized polyclonal antibody against FGF-2. In the cochlea, FGF-2 immunoreactivity was observed in the inner and outer hair cells of the organ of Corti, spiral ganglion neurons, spiral limbus, and stria vascularis. Stereological methods employing optical fractionator revealed the presence of 84.5, 15, and 0.5% of spiral ganglion neurons possessing FGF-2 immunoreactivity of strong, moderate, and weak intensity, respectively. In the central auditory pathways, FGF-2 immunoreactivity was found in the cytoplasm of the neurons of the cochlear nuclei, trapezoid body nuclei, medial geniculate nucleus, and inferior colliculus. The two-color immunoperoxidase method showed FGF-2 immunoreactivity in the nuclei of astrocytes throughout the central auditory pathway. Computer-assisted microdensitometric image analysis revealed higher levels of specific mean gray values of FGF-2 immunoreactivity in the trapezoid body and ventral cochlear nucleus and also in the spiral ganglion and inner hair cells. Sections incubated with FGF-2 antibody preabsorbed with human recombinant FGF-2 showed no immunoreaction in the majority of the studied regions, exhibiting only a slight immunoreactive product in the hair cells of the organ of Corti. Furthermore, no changes in immunoreactivity were observed in sections incubated with FGF-2 antiserum preincubated with human recombinant acidic FGF (FGF-1). The findings suggest that FGF-2 may exert paracrine and autocrine actions on neurons of the central and peripheral auditory systems and may be of importance in the mechanism of hearing diseases.  相似文献   

17.
Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition.  相似文献   

18.
19.
Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP‐expressing embryonic stem cell–derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron‐specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64–98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal's canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

20.
Distribution of immunoreactive Na+,K+-ATPase in gerbil cochlea   总被引:6,自引:0,他引:6  
The distribution of Na+,K+-ATPase was mapped in cochleas of mature gerbils with normal hearing, using a specific and sensitive immunocytochemical method. Na+,K+-ATPase was abundant in the basolateral plasma membrane of marginal cells in the stria vascularis. Considerable levels of enzyme were also associated with the surfaces of spiral ganglion neurons and their central and peripheral processes. An unexpected finding was the detection of high levels of immunoreactive Na+,K+-ATPase in three different populations of cells lying in the inferior portion of the spiral ligament and at the medial and lateral border of the scala vestibuli just superior to the attachment of Reissner's membrane. Cells in these areas shared the morphological characteristics of cells specialized for active transport but appeared to be nonpolarized, suggesting a uniform distribution of Na+,K+-ATPase over their entire plasmalemma. The presence of these three distinct cell populations in the cochlea of several mammalian species suggests that they play an important role in cochlear function, perhaps that of regulating the cation content of perilymph. The absence of discrete concentrations of Na+,K+-ATPase-rich cells in the perilymphatic connective tissue of the bird cochlea and the mammalian vestibular system suggests further that these cells may be involved with generating and maintaining the high endolymphatic potential unique to the mammalian cochlea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号