首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the objectives of microalgal culture is to provide reliable production technology for important live aquaculture feed organisms. Presented here are the results of experiments designed to provide a better understanding of the relationship between inorganic carbon availability and algal production.Our results suggest that through additions of CO2 gas we were able to maintain sufficient dissolved carbon to stabilize outdoor algal cultures. Increases in the rate of addition of CO2 increased levels of dissolved CO2, total dissolved inorganic carbon (CO2), and decreased pH in the growth medium. This translated into improved buffering capacity of the culture medium and higher growth rate. A minimum of 2.4 mM CO2 was found necessary to maintain a maximal growth rate of 0.7 doublings/day. We also found that the increased productivity more than offsets the cost of adding the CO2.  相似文献   

2.
Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions1. Microalgae not only capture solar energy more efficiently than plants3, but also synthesize advanced biofuels2-4. Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth5. On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient “flue gas to algae” system. Researchers have proposed different photobioreactor configurations4,6 and cultivation strategies7,8 with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation.  相似文献   

3.
Changes in pH, total alkalinity and O2 concentration were followed in an aquatic medium with excised wheat roots (Tritkum aestivum L.). Concentrations of total inorganic carbon and free CO2 were calculated from total alkalinity and pH according to carbonate equilibria. The total inorganic carbon was estimated by flow-injection infra-red gas analysis. Total alkalinity increased in the root medium during incubation. Respiratory CO2 production was estimated best from the increase in total inorganic carbon measured with an infra-red gas analyser.  相似文献   

4.
The accumulation of atmospheric CO2, primarily due to combustion of fossil fuels, has been implicated in potential global climate change. The high rate of CO2 bioremediation by microalgae has emerged as a favourable method for reducing coal-fired power plant emissions. However, coal-fired power station flue gas contains other chemicals such as SOx which can inhibit microalgal growth. In the current study, the effect of untreated flue gas as a source of inorganic carbon on the growth of Tetraselmis in a 1000 L industrial-scale split-cylinder internal-loop airlift photobioreactor was examined. The culture medium was recycled after each harvest. Tetraselmis suecica grew very well in this airlift photobioreactor during the 7-month experiment using recycled medium from an electroflocculation harvesting unit. Increased medium SO4 2? concentration as high as 870 mg SO4 2??L?1 due to flue gas addition and media recycling had no negative effect on the overall growth and productivity of this alga. The potential organic biomass productivity and carbon sequestration using an industrial-scale airlift PBR at International Power Hazelwood, Gippsland, Victoria, Australia, are 178.9?±?30 mg L?1 day?1 and 89.15?±?20 mg?‘C’?L?1 day?1, respectively. This study clearly indicates the potential of growing Tetraselmis on untreated flue gas and using recycled medium for the purpose of biofuel and CO2 bioremediation.  相似文献   

5.
Algal biomass refineries for sustainable transportation fuels, in particular biodiesel, will benefit from algal strain enhancements to improve biomass and lipid productivity. Specifically, the supply of inorganic carbon to microalgal cultures represents an area of great interest due to the potential for improved growth of microalgae and the possibility for incorporation with CO2 mitigation processes. Combinations of bicarbonate (HCO3?) salt addition and application of CO2 to control pH have shown compelling increases in growth rate and lipid productivity of fresh water algae. Here, focus was placed on the marine organism, Nannochloropsis gaditana, to investigate growth and lipid accumulation under various strategies of enhanced inorganic carbon supply. Three gas application strategies were investigated: continuous sparging of atmospheric air, continuous sparging of 5% CO2 during light hours until nitrogen depletion, and continuous sparging of atmospheric air supplemented with 5% CO2 for pH control between 8.0 and 8.3. These gas sparging schemes were combined with addition of low concentrations (5 mM) of sodium bicarbonate at inoculation and high concentration (50 mM) of sodium bicarbonate amendments just prior to nitrogen depletion. The optimum scenario observed for growth of N. gaditana under these inorganic carbon conditions was controlling pH with 5% CO2 on demand, which increased both growth rate and lipid accumulation. Fatty acid methyl esters were primarily comprised of C16:0 (palmitic) and C16:1 (palmitoleic) aliphatic chains. Additionally, the use of high concentration (50 mM) of bicarbonate amendments further improved lipid content (up to 48.6%) under nitrogen deplete conditions when paired with pH-controlled strategies.  相似文献   

6.
The marine cyanobacterium, Synechococcus sp. Nägeli (strain RRIMP N1) changes its affinity for external inorganic carbon used in photosynthesis, depending on the concentration of CO2 provided during growth. The high affinity for CO2 + HCO3 of air-grown cells (K½ < 80 nanomoles [pH 8.2]) would seem to be the result of the presence of an inducible mechanism which concentrates inorganic carbon (and thus CO2) within the cells. Silicone-oil centrifugation experiments indicate that the inorganic carbon concentration inside suitably induced cells may be in excess of 1,000-fold greater than that in the surrounding medium, and that this accumulation is dependent upon light energy. The quantum requirements for O2 evolution appear to be some 2-fold greater for low CO2-grown cells, compared with high CO2-grown cells. This presumably is due to the diversion of greater amounts of light energy into inorganic carbon transport in these cells.

A number of experimental approaches to the question of whether CO2 or HCO3 is primarily utilized by the inorganic carbon transport system in these cells show that in fact both species are capable of acting as substrate. CO2, however, is more readily taken up when provided at an equivalent concentration to HCO3. This discovery suggests that the mechanistic basis for the inorganic carbon concentrating system may not be a simple HCO3 pump as has been suggested. It is clear, however, that during steady-state photosynthesis in seawater equilibrated with air, HCO3 uptake into the cell is the primary source of internal inorganic carbon.

  相似文献   

7.
Algal cultivation is a potential candidate for CO2 mitigation. CO2 plays important roles in mass cultivation of algae, including supplying carbon source and adjusting medium pH. To assess the possibility of using edible cyanobacterium Nostoc flagelliforme as carbon storage device, the growth characteristics of N. flagelliforme batch cultured under elevated CO2 concentrations (0, 2.5, 5, 20, and 40%) were investigated in this study. Results showed that the net photosynthetic rate, efficiency and carbon sequestration rate at 20% CO2 were increased at a maximum of 121 μmol O2 (mg chla)?1 h?1 8.40% and 0.17 g CO2 L?1 day?1, and increased by 0.42, 1.03 and 1.13 folds compared with that of the control, respectively. Higher CO2 concentration resulted in the declines in photosynthetic rate, efficiency and carbon sequestration rate because of medium pH reduction. Accordingly, the dry cell weight, amount of exopolysaccharides and protein content of N. flagelliforme cells at 20% CO2 were obtained at a maximum of 1.45 g L?1, 54.98 mg L?1 and 57.75%, increased by 0.93, 0.29 and 0.8 folds compared with that of the control, respectively. These results provided important information for CO2 mitigation by N. flagelliforme and would shed more light on elucidating the mechanisms of CO2 tolerance in cyanobacterium.  相似文献   

8.
Our research objectives are to determine under what conditions microalgal-based CO2 capture from flue gases is economically attractive. Specifically, our objective here was to select microalgae that are temperature, pH and flue gas tolerant. Microalgae were grown under five different temperatures, three different pH and five different flue gas mixtures besides 100% CO2 (gas concentrations that the cells were exposed to ranged 5.7–100% CO2, 0–3504 ppm SO2, 0–328 ppm NO, and 0–126 ppm NO2). Our results indicate that the microalgal strains tested exhibit a substantial ability to withstand a wide range of temperature (54 strains tested), pH (20 strains tested) and flue gas composition (24 strains tested) likely to be encountered in cultures used for carbon sequestration from smoke stack gases. Our results indicate that microalgal photosynthesis is a limited but viable strategy for CO2 capture from flue gases produced by stationary combustion sources.  相似文献   

9.

Scenedesmus is a genus of microalgae employed for several industrial uses. Industrial cultivations are performed in open ponds or in closed photobioreactors (PBRs). In the last years, a novel type of PBR based on immobilized microalgae has been developed termed porous substrate photobioreactors (PSBR) to achieve significant higher biomass density during cultivation in comparison to classical PBRs. This work presents a study of the growth of Scenedesmus vacuolatus in a Twin Layer System PSBR at different light intensities (600 μmol photons m−2 s−1 or 1000 μmol photons m−2 s−1), different types and concentrations of the nitrogen sources (nitrate or urea), and at two CO2 levels in the gas phase (2% or 0.04% v/v). The microalgal growth was followed by monitoring the attached biomass density as dry weight, the specific growth rate and pigment accumulation. The highest productivity (29 g m−2 d−1) was observed at a light intensity of 600 μmol photons m−2 s−1 and 2% CO2. The types and concentrations of nitrogen sources did not influence the biomass productivity. Instead, the higher light intensity of 1000 μmol photons m−2 s−1 and an ambient CO2 concentration (0.04%) resulted in a significant decrease of productivity to 18 and 10–12 g m−2 d−1, respectively. When compared to the performance of similar cultivation systems (15–30 g m−2 d−1), these results indicate that the Twin Layer cultivation System is a competitive technique for intensified microalgal cultivation in terms of productivity and, at the same time, biomass density.

  相似文献   

10.

In this work, a photobioreactor with microalgae biofilm was proposed to enhance CO2 biofixation and protein production using nickel foam with the modified surface as the carrier for immobilizing microalgae cells. The results demonstrated that, compared with microalgae suspension, microalgae biofilm lowered mass transfer resistance and promoted mass transfer efficiency of CO2 from the bubbles into the immobilized microalgae cells, enhancing CO2 biofixation and protein production. Moreover, parametric studies on the performance of the photobioreactor with microalgae biofilm were also conducted. The results showed that the photobioreactor with microalgae biofilm yielded a good performance with the CO2 biofixation rate of 4465.6 µmol m−3 s−1, the protein concentration of effluent liquid of 0.892 g L−1, and the protein synthesis rate of 43.11 g m−3 h−1. This work will be conducive to the optimization design of microalgae culture system for improving the performance of the photobioreactor.

  相似文献   

11.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

12.
Microalgae have been exploited for biofuel generation in the current era due to its enormous energy content, fast cellular growth rate, inexpensive culture approaches, accumulation of inorganic compounds, and CO2 sequestration. Currently, research is ongoing towards the advancement of the microalgae cultivation parameters to enhance the biomass yield. The main objective of this study was to delineate the progress of physicochemical parameters for microalgae cultivation such as gaseous transfer, mixing, light demand, temperature, pH, nutrients and the culture period. This review demonstrates the latest research trends on mass transfer coefficient of different microalgae culturing reactors, gas velocity optimization, light intensity, retention time, and radiance effects on microalgae cellular growth, temperature impact on chlorophyll production, and nutrient dosage ratios for cellulosic metabolism to avoid nutrient deprivation. Besides that, cultivation approaches for microalgae associated with mathematical modeling for different parameters, mechanisms of microalgal growth rate and doubling time have been elaborately described. Along with that, this review also documents potential lipid-carbohydrate-protein enriched microalgae candidates for biofuel, biomass productivity, and different cultivation conditions including open-pond cultivation, closed-loop cultivation, and photobioreactors. Various photobioreactor types, the microalgae strain, productivity, advantages, and limitations were tabulated. In line with microalgae cultivation, this study also outlines in detail numerous biofuels from microalgae.  相似文献   

13.
Scenedesmus cells grown on high CO2, when adapted to air levels of CO2 for 4 to 6 hours in the light, formed two concentrating processes for dissolved inorganic carbon: one for utilizing CO2 from medium of pH 5 to 8 and one for bicarbonate accumulation from medium of pH 7 to 11. Similar results were obtained with assays by photosynthetic O2 evolution or by accumulation of dissolved inorganic carbon inside the cells. The CO2 pump with K0.5 for O2 evolution of less than 5 micromolar CO2 was similar to that previously studied with other green algae such as Chlamydomonas and was accompanied by plasmalemma carbonic anhydrase formation. The HCO3 concentrating process between pH 8 to 10 lowered the K0.5 (DIC) from 7300 micromolar HCO3 in high CO2 grown Scenedesmus to 10 micromolar in air-adapted cells. The HCO3 pump was inhibited by vanadate (Ki of 150 micromolar), as if it involved an ATPase linked HCO3 transporter. The CO2 pump was formed on low CO2 by high-CO2 grown cells in growth medium within 4 to 6 hours in the light. The alkaline HCO3 pump was partially activated on low CO2 within 2 hours in the light or after 8 hours in the dark. Full activation of the HCO3 pump at pH 9 had requirements similar to the activation of the CO2 pump. Air-grown or air-adapted cells at pH 7.2 or 9 accumulated in one minute 1 to 2 millimolar inorganic carbon in the light or 0.44 millimolar in the dark from 150 micromolar in the media, whereas CO2-grown cells did not accumulate inorganic carbon. A general scheme for concentrating dissolved inorganic carbon by unicellular green algae utilizes a vanadate-sensitive transporter at the chloroplast envelope for the CO2 pump and in some algae an additional vanadate-sensitive plasmalemma HCO3 transporter for a HCO3 pump.  相似文献   

14.
Inorganic Carbon Uptake by Chlamydomonas reinhardtii   总被引:15,自引:12,他引:3  
The rates of CO2-dependent O2 evolution by Chlamydomonas reinhardtii, grown with either air levels of CO2 or air with 5% CO2, were measured at varying external pH. Over a pH range of 4.5 to 8.5, the external concentration of CO2 required for half-maximal rates of photosynthesis was constant, averaging 25 micromolar for cells grown with 5% CO2. This is consistent with the hypothesis that these cells take up CO2 but not HCO3 from the medium and that their CO2 requirement for photosynthesis reflects the Km(CO2) of ribulose bisphosphate carboxylase. Over a pH range of 4.5 to 9.5, cells grown with air required an external CO2 concentration of only 0.4 to 3 micromolar for half-maximal rates of photosynthesis, consistent with a mechanism to accumulate external inorganic carbon in these cells. Air-grown cells can utilize external inorganic carbon efficiently even at pH 4.5 where the HCO3 concentration is very low (40 nanomolar). However, at high external pH, where HCO3 predominates, these cells cannot accumulate inorganic carbon as efficiently and require higher concentrations of NaHCO3 to maintain their photosynthetic activity. These results imply that, at the plasma membrane, CO2 is the permeant inorganic carbon species in air-grown cells as well as in cells grown on 5% CO2. If active HCO3 accumulation is a step in CO2 concentration by air-grown Chlamydomonas, it probably takes place in internal compartments of the cell and not at the plasmalemma.  相似文献   

15.
The species of inorganic carbon (CO2 or HCO3) taken up a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO2 or HCO3 transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO2 or HCO3 transport) and experimental time-courses of 14C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO2, rather than HCO3, is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO3 transport, as the incorporation of 14C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO2 uptake alone. The contribution of HCO3 to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO3 concentration. The evidence for direct HCO3 transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO2, which is partially alleviated by a high extracellular concentration of HCO3.  相似文献   

16.
The external inorganic carbon pool (CO2 + HCO3) was measured in both high and low CO2-grown cells of Chlamydomonas reinhardtii, using a silicone oil layer centrifugal filtering technique. The average internal pH values were measured for each cell type using [14C]dimethyloxazolidinedione, and the internal inorganic carbon pools were recalculated on a free CO2 basis. These measurements indicated that low CO2-grown cells were able to concentrate CO2 up to 40-fold in relation to the external medium. Low and high CO2-grown cells differed in their photosynthetic affinity for external CO2. These differences could be most readily explained as being due to the relative CO2-concentrating capacity of each cell type. This physiological adaptation appeared to be based on changes in the abilities of the cells actively to accumulate inorganic carbon using an energy-dependent transport system.  相似文献   

17.
The possibility of HCO3 transport into isolated leaf mesophyll cells of Asparagus sprengeri Regel has been investigated. Measurement of the inorganic carbon pool in these cells over an external pH range 6.2 to 8.0, using the silicone-fluid filtration technique, indicated that the pool was larger than predicted by passive 14CO2 distribution, suggesting that HCO3 as well as CO2 crosses the plasmalemma. Intracellular pH values, calculated from the distribution of 14CO2 between the cells and the medium, were found to be higher (except at pH 8.0) than those previously determined by 5,5-dimethyl[2-14C]oxazolidine-2,4-dione distribution. It is suggested that the inorganic carbon accumulated above predicted concentrations may be bound to proteins and membranes and thus may not represent inorganic carbon actively accumulated by the cells, inasmuch as in a closed system at constant CO2 concentration, the photosynthetic rates at pH 7.0 and 8.0 were 5 to 8 times lower than the maximum rate which could be supported by CO2 arising from the spontaneous dehydration of HCO3. Furthermore, CO2 compensation points of the cells in liquid media at 21% O2 at pH 7.0 and 8.0, and the K½ CO2 (CO2 concentration supporting the half maximal rate of O2 evolution) at 2% O2 at pH 7.0 and 8.0 are not consistent with HCO3 transport. These results indicate that the principal inorganic carbon species crossing the plasmalemma in these cells is CO2.  相似文献   

18.
Summary Six independently isolated mutants of Chlamydomonas reinhardtii that require elevated CO2 for photoautotrophic growth were tested by complementation analysis. These mutants are likely to be defective in some aspect of the algal concentrating mechanism for inorganic carbon as they exhibit CO2 fixation and inorganic carbon accumulation properties different from the wild-type. Four of the six mutants defined a single complementation group and appear to be defective in an intracellular carbonic anhydrase. The other two mutations represent two additional complementation groups.Abbreviations HS high salt medium which has 13 mM phosphate at pH 6.8 - HSA high salt plus 36 mM acetate medium - YA high salt medium with 4 g yeast extract per L and 36mM acetate - Arg arginine - cia- CO2 accumulation mutants that cannot grow on low CO2 - Ci inorganic carbon (CO2+HCO - 3 ) - CA carbonic anhydrase - mt mating type Supported in part by the McKnight Foundation and by NSF grant PCM 8005917 and published as journal article 11924 from the Michigan State Agriculatural Experiment Station  相似文献   

19.
Carbon dioxide concentrating mechanisms (CCMs) act to improve the supply of CO2 at the active site of ribulose‐1,5‐bisphosphate carboxylase/oxygenase. There is substantial evidence that in some microalgal species CCMs involve an external carbonic anhydrase (CAext) and that CAext activity is induced by low CO2 concentrations in the growth medium. However, much of this work has been conducted on cells adapted to air‐equilibrium concentrations of CO2, rather than to changing CO2 conditions caused by growing microalgal populations. We investigated the role of CAext in inorganic carbon (Ci) acquisition and photosynthesis at three sampling points during the growth cycle of the cosmopolitan marine diatom Chaetoceros muelleri. We observed that CAext activity increased with decreasing Ci, particularly CO2, concentration, supporting the idea that CAext is modulated by external CO2 concentration. Additionally, we found that the contribution of CAext activity to carbon acquisition for photosynthesis varies over time, increasing between the first and second sampling points before decreasing at the last sampling point, where external pH was high. Lastly, decreases in maximum quantum yield of photosystem II (Fv/Fm), chlorophyll, maximum relative electron transport rate, light harvesting efficiency (α) and maximum rates of Ci‐ saturated photosynthesis (Vmax) were observed over time. Despite this decrease in photosynthetic capacity an up‐regulation of CCM activity, indicated by a decreasing half‐saturation constant for CO2 (K0.5CO2), occurred over time. The flexibility of the CCM during the course of growth in C. muelleri may contribute to the reported dominance and persistence of this species in phytoplankton blooms.  相似文献   

20.
Mechanisms of inorganic carbon assimilation were investigated in the deep-water alga Phyllariopsis purpurascens (C. Agardh) Henry et South (Laminariales, Phaeophyta). The gross photosynthetic rate as a function of external pH, at a constant concentration of 2 mM dissolved inorganic carbon (DIC), decreased sharply from pH 7.0 to 9.0, and was not substantially different from 0 above pH 9.0. These data indicate that P. purpurascens is inefficient in the use of external HCO3 as a carbon source in photosynthesis. Moreover, the photosynthetic rate as a function of external DIC and the highest pH (9.01 ± 0.07) that this species can achieve in a closed system were consistent with a low capacity to use HCO3 , in comparison to many other species of seaweeds. The role of external carbonic anhydrase (CA; EC 4.2.1.1) on carbon uptake was investigated by measuring both the HCO3 -dependent O2 evolution and the CO2 uptake, at pH 5.5 and 8.0, and the rate of pH change in the external medium, in the presence of selected inhibitors of extra- and intracellular CA. Photosynthetic DIC-dependent O2 evolution was higher at pH 5.5 (where CO2 is the predominant form of DIC) than at pH 8.0 (where the predominant chemical species is HCO3 ). Both intra- and extracellular CA activity was detected. Dextran-bound sulfonamide (DBS; a specific inhibitor of extracellular CA) reduced the photosynthetic O2 evolution and CO2 uptake at pH 8.0, but there was no effect at pH 5.5. The pH-change rate of the medium, under saturating irradiance, was reduced by DBS. Phyllariopsis purpurascens has a low efficiency in the use of HCO3 as carbon source in photosynthesis; nevertheless, the ion can be used after dehydration, in the external medium, catalyzed by extracellular CA. This mechanism could explain why the photosynthetic rate in situ was higher than that supported solely by the diffusion of CO2 from seawater. Received: 6 March 1998 / Accepted: 22 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号