首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Central to genetic work in any organism are the availability of a range of inducible and constitutive promoters. In this work we studied several promoters for use in the hyperthermophilic archaeon Sulfolobus acidocaldarius. The promoters were tested with the aid of an E. coliSulfolobus shuttle vector in reporter gene experiments. As the most suitable inducible promoter a maltose inducible promoter was identified. It comprises 266 bp of the sequence upstream of the gene coding for the maltose/maltotriose binding protein (mbp, Saci_1165). Induction is feasible with either maltose or dextrin at concentrations of 0.2–0.4%. The highest increase in expression (up to 17-fold) was observed in late exponential and stationary phase around 30–50 h after addition of dextrin. Whereas in the presence of glucose and xylose higher basal activity and reduced inducibility with maltose is observed, sucrose can be used in the growth medium additionally without affecting the basal activity or the inducibility. The minimal promoter region necessary could be narrowed down to 169 bp of the upstream sequence. The ABCE1 protein from S. solfataricus was successfully expressed under control of the inducible promoter with the shuttle vector pC and purified from the S. acidocaldarius culture with a yield of about 1 mg L−1 culture. In addition we also determined the promoter strength of several constitutive promoters.  相似文献   

5.
6.
7.
8.
We report the cloning and sequencing of a gene cluster encoding a maltose/trehalose transport system of the hyperthermophilic archaeon Thermococcus litoralis that is homologous to the malEFG cluster encoding the Escherichia coli maltose transport system. The deduced amino acid sequence of the malE product, the trehalose/maltose-binding protein (TMBP), shows at its N terminus a signal sequence typical for bacterial secreted proteins containing a glyceride lipid modification at the N-terminal cysteine. The T. litoralis malE gene was expressed in E. coli under control of an inducible promoter with and without its natural signal sequence. In addition, in one construct the endogenous signal sequence was replaced by the E. coli MalE signal sequence. The secreted, soluble recombinant protein was analyzed for its binding activity towards trehalose and maltose. The protein bound both sugars at 85°C with a Kd of 0.16 μM. Antibodies raised against the recombinant soluble TMBP recognized the detergent-soluble TMBP isolated from T. litoralis membranes as well as the products from all other DNA constructs expressed in E. coli. Transmembrane segments 1 and 2 as well as the N-terminal portion of the large periplasmic loop of the E. coli MalF protein are missing in the T. litoralis MalF. MalG is homologous throughout the entire sequence, including the six transmembrane segments. The conserved EAA loop is present in both proteins. The strong homology found between the components of this archaeal transport system and the bacterial systems is evidence for the evolutionary conservation of the binding protein-dependent ABC transport systems in these two phylogenetic branches.  相似文献   

9.
10.
11.
12.
13.
14.
15.
TrmB of Pyrococcus furiosus was discovered as the trehalose/maltose-specific repressor for the genes encoding the trehalose/maltose high-affinity ABC transporter (the TM system). TrmB also represses the genes encoding the high affinity maltodextrin-specific ABC transporter (the MD system) with maltodextrin and sucrose as inducers. In addition, TrmB binds glucose leading to an increased repression of both, the TM and the MD system. Thus, TrmB recognizes different promoters and depending on the promoter it will be activated or inactivated for promoter binding by different sugar effectors. The TrmB-like protein TrmBL1 of P. furiosus is a global regulator and recognizes preferentially, but not exclusively, the TGM (for Thermococcales-glycolytic motif) sequence that is found upstream of the MD system as well as of genes encoding enzymes involved in the glycolytic and the gluconeogenic pathway. It responds to maltose and maltotriose as inducers and functions as repressor for the genes encoding the MD system and glycolytic enzymes, but as activator for genes encoding gluconeogenic enzymes. The TrmB-like protein TrmBL2 of P. furiosus lacks the sugar-binding domain that has been determined in TrmB. It recognizes the MD promoter, but not all TGM harboring promoters. It is evolutionary the most conserved among the Thermococcales. The regulatory range of TrmBL2 remains unclear.  相似文献   

16.
17.
18.
19.
A gene coding for a putative α-glucosidase has been identified in the open reading frame yvdL (now termed malL), which was sequenced as part of the Bacillus subtilis genome project. The enzyme was overproduced in Escherichia coli and purified. Further analyses indicate that MalL is a specific oligo-1,4-1,6-α-glucosidase (sucrase-maltase-isomaltase). MalL expression in B. subtilis requires maltose induction and is subject to carbon catabolite repression by glucose and fructose. Insertional mutagenesis of malL resulted in a complete inactivation of the maltose-inducible α-glucosidase activity in crude protein extracts and a Mal phenotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号