首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine mutations in the switch I and switch II regions of human ADP-ribosylation factor 3 (ARF3) were isolated from loss-of-interaction screens, using two-hybrid assays with three different effectors. We then analyzed the ability of the recombinant proteins to (i) bind guanine nucleotides, (ii) activate phospholipase D1 (PLD1), (iii) recruit coatomer (COP-I) to Golgi-enriched membranes, and (iv) expand and vesiculate Golgi in intact cells. Correlations of activities in these assays were used as a means of testing specific hypotheses of ARF action, including the role of PLD1 activation in COP-I recruitment, the role of COP-I in Golgi vesiculation caused by expression of the dominant activating mutant [Q71L]ARF3, and the need for PLD1 activation in Golgi vesiculation. Because we were able to find at least one example of a protein that has lost each of these activities with retention of the others, we conclude that activation of PLD1, recruitment of COP-I to Golgi, and vesiculation of Golgi in cells are functionally separable processes. The ability of certain mutants of ARF3 to alter Golgi morphology without changes in PLD1 activity or COP-I binding is interpreted as evidence for at least one additional, currently unidentified, effector for ARF action at the Golgi.  相似文献   

2.
ADP-ribosylation factor (ARF) proteins and inhibitory peptides derived from ARFs have demonstrated activities in a number of in vitro assays that measure ER-to-Golgi and intra-Golgi transport and endosome fusion. To better understand the roles of ARF proteins in vivo, stable cell lines were obtained from normal rat kidney (NRK) cells transfected with either wild-type or a dominant activating allele ([Q71L]) of the human ARF1 gene under the control of the interferon-inducible mouse Mx1 promoter. Upon addition of interferon, expression of ARF1 proteins increased with a half-time of 7-8 h, as determined by immunoblot analysis. Induction of mutant ARF1, but not wild-type ARF1, led to an inhibition of protein secretion with kinetics similar to that observed for induction of protein expression. Examination of the Golgi apparatus and the ER by indirect immunofluorescence or transmission electron microscopy revealed that expression of low levels of mutant ARF1 protein correlated with a dramatic increase in vesiculation of the Golgi apparatus and expansion of the ER lumen, while expression of substantially higher levels of wild-type ARF1 had no discernible effect. Endocytosis was also inhibited by expression of mutant ARF1, but not by the wild-type protein. Finally, the expression of [Q71L]ARF1, but not wild-type ARF1, antagonized the actions of brefeldin A, as determined by the delayed loss of ARF and beta-COP from Golgi membranes and disruption of the Golgi apparatus. General models for the actions of ARF1 in membrane traffic events are discussed.  相似文献   

3.
After agonist-induced internalization, the vasopressin V2 receptor (V2R) does not recycle to the plasma membrane. The ADP-ribosylation factor (ARF) proteins initiate vesicular intracellular traffic by promoting the recruitment of adaptor proteins; thus, we sought to determine whether ARF6 could promote V2R recycling. Neither the agonist-induced internalization nor the recycling of the V2R was regulated by ARF6, but a constitutively active mutant of ARF6 reduced cell-surface V2Rs 10-fold in the absence of agonist treatment. Visualization of the ARF6 mutant-expressing cells revealed a vacuolar-staining pattern of the V2R instead of the normal plasma membrane expression. Analysis of V2R maturation revealed that reduced cell-surface expression was due to the diminished ability of the newly synthesized receptor to migrate from the endoplasmic reticulum to the Golgi network. The same mechanism affected processing of the V1aR and acetylcholine M2 receptors. Therefore, ARF6 controls the exit of the V2 and other receptors from the endoplasmic reticulum in addition to its established role in the trafficking of plasma-membrane-derived vesicles.  相似文献   

4.
Despite the 40-60% identity between ADP-ribosylation factors (ARFs) and ARF-like (ARL) proteins, distinct functional roles have been inferred from findings that ARLs lack the biochemical or genetic activities characteristic of ARFs. The potential for functional overlap between ARFs and ARLs was examined by comparing effects of expression on intact cells and the ability to bind effectors. Expression of [Q71L]ARL1 in mammalian cells led to altered Golgi structure similar to, but less dramatic than, that reported previously for [Q71L]ARF1. Two previously identified partners of ARFs, MKLP1 and Arfaptin2/POR1, also bind ARL1 but not ARL2 or ARL3. Two-hybrid screens of human cDNA libraries with dominant active mutants of human ARL1, ARL2, and ARL3 identified eight different but overlapping sets of binding partners. Specific interactions between ARL1 and two binding proteins, SCOCO and Golgin-245, are defined and characterized in more detail. Like ARFs and ARL1, the binding of SCOCO to Golgi membranes is rapidly reversed by brefeldin A, suggesting the presence of a brefeldin A-sensitive ARL1 exchange factor. These data reveal a complex network of interactions between GTPases in the ARF family and their effectors and reveal a potential for cross-talk not demonstrated previously.  相似文献   

5.
Xu J  Scheres B 《The Plant cell》2005,17(2):525-536
Vesicle trafficking is essential for the generation of asymmetries, which are central to multicellular development. Core components of the vesicle transport machinery, such as ADP-ribosylation factor (ARF) GTPases, have been studied primarily at the single-cell level. Here, we analyze developmental functions of the ARF1 subclass of the Arabidopsis thaliana multigene ARF family. Six virtually identical ARF1 genes are ubiquitously expressed, and single loss-of-function mutants in these genes reveal no obvious developmental phenotypes. Fluorescence colocalization studies reveal that ARF1 is localized to the Golgi apparatus and endocytic organelles in both onion (Allium cepa) and Arabidopsis cells. Apical-basal polarity of epidermal cells, reflected by the position of root hair outgrowth, is affected when ARF1 mutants are expressed at early stages of cell differentiation but after they exit mitosis. Genetic interactions during root hair tip growth and localization suggest that the ROP2 protein is a target of ARF1 action, but its localization is slowly affected upon ARF1 manipulation when compared with that of Golgi and endocytic markers. Localization of a second potential target of ARF1 action, PIN2, is also affected with slow kinetics. Although extreme redundancy precludes conventional genetic dissection of ARF1 functions, our approach separates different ARF1 downstream networks involved in local and specific aspects of cell polarity.  相似文献   

6.
Arf GTPases are known to be key regulators of vesicle budding in various steps of membrane traffic in yeast and animal cells. We cloned the Arabidopsis Arf1 homologue, AtArf1, and examined its function. AtArf1 complements yeast arf1 arf2 mutants and its GFP-fusion is localized to the Golgi apparatus in plant cells like its animal counterpart. The expression of dominant negative mutants of AtArf1 in tobacco and Arabidopsis cultured cells affected the localization of co-expressed GFP-tagged proteins in a variety of ways. AtArf1 Q71L and AtArf1 T31N, GTP- and GDP-fixed mutants, respectively, changed the localization of a cis-Golgi marker, AtErd2-GFP, from the Golgi apparatus to the endoplasmic reticulum but not that of GFP-AtRer1B or GFP-AtSed5. GFP-AtRer1B and GFP-AtSed5 were accumulated in aberrant structures of the Golgi by AtArf1 Q71L. A soluble vacuolar protein, sporamin-GFP, was also located to the ER by AtArf1 Q71L. These results indicate that AtArf1 play roles in the vesicular transport between the ER and the Golgi and in the maintenance of the normal Golgi organization in plant cells.  相似文献   

7.
ADP-ribosylation factors (ARFs) are ubiquitous regulators of virtually every step of vesicular membrane traffic. Yeast Arf3p, which is most similar to mammalian ARF6, is not essential for cell viability and not required for endoplasmic reticulum-to-Golgi protein transport. Although mammalian ARF6 has been implicated in the regulation of early endocytic transport, we found that Arf3p was not required for fluid-phase, membrane internalization, or mating-type receptor-mediated endocytosis. Arf3p was partially localized to the cell periphery, but was not detected on endocytic structures. The nucleotide-binding, N-terminal region, and N-terminal myristate of Arf3p are important for its proper localization. C-Terminally green fluorescent protein-tagged Arf3, expressed from the endogenous promoter, exhibited a polarized localization to the cell periphery and buds, in a cell cycle-dependent manner. Arf3-GFP achieved its proper localization during polarity growth through an actin-independent pathway. Both haploid and homologous diploid arf3 mutants exhibit a random budding defect, and the overexpression of the GTP-bound form Arf3p(Q71L) or GDP-binding defective Arf3p(T31N) mutant interfered with budding-site selection. We conclude that the GTPase cycle of Arf3p is likely to be important for the function of Arf3p in polarizing growth of the emerging bud and/or an unidentified vesicular trafficking pathway.  相似文献   

8.
ADP-ribosylation factor (ARF) 6 regulates endosomal plasma membrane trafficking in many cell types, but is also suggested to play a role in Ca2+-dependent dense-core vesicle (DCV) exocytosis in neuroendocrine cells. In the present work, expression of the constitutively active GTPase-defective ARF6Q67L mutant in PC12 cells was found to inhibit Ca2+-dependent DCV exocytosis. The inhibition of exocytosis was accompanied by accumulation of ARFQ67L, phosphatidylinositol 4,5-bisphosphate (PIP2), and the phosphatidylinositol 4-phosphate 5-kinase type I (PIP5KI) on endosomal membranes with their corresponding depletion from the plasma membrane. That the depletion of PIP2 and PIP5K from the plasma membrane caused the inhibition of DCV exocytosis was demonstrated directly in permeable cell reconstitution studies in which overexpression or addition of PIP5KIgamma restored Ca2+-dependent exocytosis. The restoration of exocytosis in ARF6Q67L-expressing permeable cells unexpectedly exhibited a Ca2+ dependence, which was attributed to the dephosphorylation and activation of PIP5K. Increased Ca2+ and dephosphorylation stimulated the association of PIP5KIgamma with ARF6. The results reveal a mechanism by which Ca2+ influx promotes increased ARF6-dependent synthesis of PIP2. We conclude that ARF6 plays a role in Ca2+-dependent DCV exocytosis by regulating the activity of PIP5K for the synthesis of an essential plasma membrane pool of PIP2.  相似文献   

9.
Ca(2+)-dependent activator protein for secretion (CAPS) regulates exocytosis of catecholamine- or neuropeptide-containing dense-core vesicles (DCVs) at secretion sites, such as nerve terminals. However, large amounts of CAPS protein are localized in the cell soma, and the role of somal CAPS protein remains unclear. The present study shows that somal CAPS1 plays an important role in DCV trafficking in the trans-Golgi network. The anti-CAPS1 antibody appeared to pull down membrane fractions, including many Golgi-associated proteins, such as ADP-ribosylation factor (ARF) small GTPases. Biochemical analyses of the protein-protein interaction showed that CAPS1 interacted specifically with the class II ARF4/ARF5, but not with other classes of ARFs, via the pleckstrin homology domain in a GDP-bound ARF form-specific manner. The pleckstrin homology domain of CAPS1 showed high affinity for the Golgi membrane, thereby recruiting ARF4/ARF5 to the Golgi complex. Knockdown of either CAPS1 or ARF4/ARF5 expression caused accumulation of chromogranin, a DCV marker protein, in the Golgi, thereby reducing its DCV secretion. In addition, the overexpression of CAPS1 binding-deficient ARF5 mutants induced aberrant chromogranin accumulation in the Golgi and consequently reduced its DCV secretion. These findings implicate a functional role for CAPS1 protein in the soma, a major subcellular localization site of CAPS1 in many cell types, in regulating DCV trafficking in the trans-Golgi network; this activity occurs via protein-protein interaction with ARF4/ARF5 in a GDP-dependent manner.  相似文献   

10.
We reported that an inhibitor of sphingolipid biosynthesis, D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), blocks brefeldin A (BFA)-induced retrograde membrane transport from the Golgi complex to the endoplasmic reticulum (ER) (Kok et al., 1998, J. Cell Biol. 142, 25-38). We now show that PDMP partially blocks the BFA-induced ADP-ribosylation of the cytosolic protein BARS-50. Moreover, PDMP does not interfere with the BFA-induced inhibition of the binding of ADP-ribosylation factor (ARF) and the coatomer component beta-coat protein to Golgi membranes. These results are consistent with a role of ADP-ribosylation in the action of BFA and with the involvement of BARS-50 in the regulation of membrane trafficking.  相似文献   

11.
12.
ADP-ribosylation factors (ARFs) are members of a multigene family of 20-kDa guanine nucleotide-binding proteins that ate regulatory components in several pathways of intracellular vesicular trafficking. The relatively small (~180-amino acids) ARF proteins interact with a variety of molecules (in addition to GTP/GDP, of course). Cholera toxin was the first to be recognized, hence the name. Later it was shown that ARF also activates phospholipase D. Different parts of the molecule are responsible for activation of the two enzymes. In vesicular trafficking, ARF must interact with coatomer to recruit it to a membrane and thereby initiate vesicle budding. ARF function requires that it alternate between GTP- and GDP-bound forms, which involves interaction with regulatory proteins. Inactivation of ARF-GTP depends on a GTPase-activating protein or GAP. A guanine nucleotide-exchange protein or GEP accelerates release of bound GDP from inactive ARF-GDP to permit GTP binding. Inhibition of GEP by brefeldin A (BFA) blocks ARF activation and thereby vesicular transport. In cells, it causes apparent disintegration of Golgi structure. Both BFA-sensitive and insensitive GEPs are known. Sequences of peptides from a BFA-sensitive GEP purified in our laboratory revealed the presence of a Sec7 domain, a sequence of ~200 amino acids that resembles a region in the yeast Sec7 gene product, which is involved in Golgi vesicular transport. Other proteins of unknown function also contain Sec7 domains, among them a lymphocyte protein called cytohesin-1. To determine whether it had GEP activity, recombinant cytohesin-1 was synthesized in E. coli. It preferentially activated class I ARFs 1 and 3 and was not inhibited by BFA but failed to activate ARF5 (class II). There are now five Sec7 domain proteins known to have GEP activity toward class I ARFs. It remains to be determined whether there are other Sec7 domain proteins that are GEPs for ARFs 4, 5, or 6.  相似文献   

13.
Toxoplasma gondii dense granules are morphologically similar to dense matrix granules in specialized secretory cells, yet are secreted in a constitutive, calcium-independent fashion. We previously demonstrated that secretion of dense granule proteins in permeabilized parasites was augmented by the non-hydrolyzable GTP analogue guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) (Chaturvedi, S., Qi, H., Coleman, D. L., Hanson, P., Rodriguez, A., and Joiner, K. A. (1998) J. Biol. Chem. 274, 2424-2431). As now demonstrated by pharmacological and electron microscopic approaches, GTPgammaS enhanced release of dense granule proteins in the permeabilized cell system. To investigate the role of ADP-ribosylation factor 1 (ARF1) in this process, a cDNA encoding T. gondii ARF1 (TgARF1) was isolated. Endogenous and transgenic TgARF1 localized to the Golgi of T. gondii, but not to dense granules. An epitope-tagged mutant of TgARF1 predicted to be impaired in GTP hydrolysis (Q71L) partially dispersed the Golgi signal, with localization to scattered vesicles, whereas a mutant impaired in nucleotide binding (T31N) was cytosolic in location. Both mutants caused partial dispersion of a Golgi/trans-Golgi network marker. TgARF1 mutants inhibited delivery of the secretory reporter, Escherichia coli alkaline phosphatase, to dense granules, precluding an in vivo assessment of the role of TgARF1 in release of intact dense granules. To circumvent this limitation, recombinant TgARF1 was purified using two separate approaches, and used in the permeabilized cell assay. TgARF1 protein purified on a Cibacron G3 column and able to bind GTP stimulated dense granule secretion in the permeabilized cell secretion assay. These results are the first to show that ARF1 can augment release of constitutively secreted vesicles at the target membrane.  相似文献   

14.
Two distinct populations of ARF bound to Golgi membranes   总被引:21,自引:10,他引:11       下载免费PDF全文
ADP-ribosylation factor (ARF) is a small molecular weight GTP-binding protein (20 kD) and has been implicated in vesicular protein transport. The guanine nucleotide, bound to ARF protein is believed to modulate the activity of ARF but the mechanism of action remains elusive. We have previously reported that ARF binds to Golgi membranes after Brefeldin A-sensitive nucleotide exchange of ARF-bound GDP for GTP gamma S. Here we report that treatment with phosphatidylcholine liposomes effectively removed 40-60% of ARF bound to Golgi membranes with nonhydrolyzable GTP, presumably by competing for binding of activated ARF to lipid bilayers. This revealed the presence of two different pools of ARF on Golgi membranes. Whereas total ARF binding did not appear to be saturable, the liposome-resistant pool is saturable suggesting that this pool of ARF is stabilized by interaction with a Golgi membrane-component. We propose that activation of ARF by a guanine nucleotide-exchange protein results in association of myristoylated ARF GTP with the lipid bilayer of the Golgi apparatus. Once associated with the membrane, activated ARF can diffuse freely to associate stably with a target protein or possibly can be inactivated by a GTPase activating protein (GAP) activity.  相似文献   

15.
The ADP-ribosylation factor 6 (ARF6) GTPase has a dual function in cells, regulating membrane traffic and organizing cortical actin. ARF6 activation is required for recycling of the endosomal membrane back to the plasma membrane (PM) and also for ruffling at the PM induced by Rac. Additionally, ARF6 at the PM induces the formation of actin-containing protrusions. To identify sequences in ARF6 that are necessary for these distinct functions, we examined the behavior of a chimeric protein of ARF1 and ARF6. The 1-6 chimera (with the amino half of ARF1 and the carboxyl half of ARF6) localized like ARF6 in HeLa cells and moved between the endosome and PM, but it did not form protrusions, an ARF6 effector function. Two residues in the amino-terminal half of ARF6, Q37 and S38, when substituted into the 1-6 chimera allowed protrusion formation, whereas removal of these residues from ARF6 resulted in an inability to form protrusions. Interestingly, expression of 1-6 in cells selectively inhibited protrusions induced by wild-type ARF6 but had no effect on ARF6-regulated membrane movement or Rac-induced ruffling. Thus, we have uncoupled two functions of ARF6, one involved in membrane trafficking, which is necessary for Rac ruffling, and another involved in protrusion formation.  相似文献   

16.
17.
The fate of the catalytic subunit of the Escherichia coli heat labile toxin (LTA(1)) was studied after expression in mammalian cells to assess the requirement for ADP-ribosylation factor (ARF) binding to localization and toxicity and ability to compete with endogenous ARF effectors. A progression in LTA(1) localization from cytosol to binding Golgi stacks to condensation of Golgi membranes was found to correlate with the time and level of LTA(1) expression. At the highest levels of LTA(1) expression the staining of LTA and both extrinsic and lumenal Golgi markers all became diffuse, in a fashion reminiscent of the actions of brefeldin A. Thus, LTA(1) binds to the Golgi and can alter its morphology in two distinct ways. However, point mutants of LTA(1) that are defective in the ability to bind activated ARF were also unable to bind Golgi membranes or modify Golgi morphology. Co-expression of mutants of ARF3 that regained binding to these same mutant LTA(1) proteins restored the localization and activities of the toxin. Thus, binding to ARF is required both for the localization of the toxin to the Golgi and for effects on Golgi membranes. A correlation was also seen between the ability of LTA mutants to bind ARF and the increase in cellular cAMP levels. These results demonstrate the importance of ARF binding to the toxicity and cellular effects of the ADP-ribosylating bacterial toxin and reveal that mutants defective in binding ARF retain basal ADP-ribosylation activity but are the least toxic LTA(1) mutants yet described, making them the best candidates for development as mucosal adjuvants.  相似文献   

18.
The ARF6 GTPase, the least conserved member of the ADP ribosylation factor (ARF) family, associates with the plasma membrane and intracellular endosome vesicles. Mutants of ARF6 defective in GTP binding and hydrolysis have a marked effect on endocytic trafficking and the gross morphology of the peripheral membrane system. Here we report that expression of the GTPase-defective mutant of ARF6, ARF6(Q67L), remodels the actin cytoskeleton by inducing actin polymerization at the cell periphery. This cytoskeletal rearrangement was inhibited by co-expression of ARF6(Q67L) with deletion mutants of POR1, a Rac1-interacting protein involved in membrane ruffling, but not with the dominant-negative mutant of Rac1, Rac1(S17N). A synergistic effect between POR1 and ARF6 for the induction of actin polymerization was detected. Furthermore, we observed that ARF6 interacts directly with POR1 and that this interaction was GTP dependent. These findings indicate that ARF6 and Rac1 function on distinct signaling pathways to mediate cytoskeletal reorganization, and suggest a role for POR1 as an important regulatory element in orchestrating cytoskeletal rearrangements at the cell periphery induced by ARF6 and Rac1.  相似文献   

19.
We have identified a novel Ca(2+)-dependent interaction between neuronal calcium sensor-1 (NCS-1) and the GTPase ARF1. Both of these proteins are localized to the Golgi complex, and both regulate phosphatidylinositol 4-kinase IIIbeta (PI(4)Kbeta). Spatial and temporal control of phosphatidylinositol 4-phosphate levels through activation of PI(4)Kbeta is important for the recruitment of trafficking complexes to the trans-Golgi network (TGN) and vesicular traffic from this organelle. The NCS-1-ARF1 interaction and its specificity have been demonstrated through in vitro binding assays, in vitro enzyme assay, and through functional cellular assays. We show that NCS-1 can exert bidirectional effects to activate PI(4)Kbeta on its own or inhibit the activation by ARF1. NCS-1 was shown to modulate the effects of expression of ARF mutants that disrupt Golgi morphology and to recruit GDP-loaded ARF to the Golgi complex in a Ca(2+)-dependent manner. We demonstrate antagonist effects of NCS-1 and ARF on constitutive and regulated exocytosis. The NCS-1-ARF1 interaction provides evidence for functional cross-talk between Ca(2+)-dependent and ARF-dependent pathways in TGN to plasma membrane traffic.  相似文献   

20.
The human ADP-ribosylation factor-like protein, ARF4L is a member of the ARF family, which are small GTP-binding proteins that play significant roles in vesicle transport and protein secretion. However, little is known about the physiological roles of ARF4L. In this study, to understand the biological functions of ARF4L, we carried out immunocytochemical analysis of ARF4L molecules with mutations in the functional domains. ARF4L was shown to be distributed to the plasma membrane following binding to GTP (Q80L), and into endosomes following binding to GDP (T35N). Moreover, the inactive-form of ARF4L (T35N) causes localization of transferrin receptors to the endosomal compartment, while the active form (Q80L) causes transport to the plasma membrane. These findings indicate that ARF4L drive the transport of cargo protein and subsequent fusion of recycling vesicles with the plasma membrane for maintenance of the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号