首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of a sub-inhibitory concentration of chlorhexidine on lipid and sterol composition of Candida albicans was investigated. The total lipid content of this yeast grown in the presence of chlorhexidine was reduced whilst the total sterol content was increased compared with control-grown cells. Lipids and sterol analyses of this yeast grown in the presence and absence of chlorhexidine are presented. Chlorhexidine-grown yeast had a higher level of phosphatidylethanolamine, phosphatidylcholine and monogalactosyldiacylglycerol. Lower proportions of phosphatidylinositol plus phosphatidylserine, phosphatidic acid and cardiolipin were found in C. albicans grown in the presence of the drug when compared with control-grown yeast. The major fatty acids in control-grown cells were C16 and C18. Drug grown-cells had higher proportions of palmitic acid (16 : 0) and stearic acid (18 : 0), but lower proportions of palmitoleic acid (16 : 1) and oleic acid (18 : 1). Chlorhexidine also decreased the unsaturated-to-saturated fatty acid ratio, while the C16/C18 ratios increased compared to control-grown cells. Differences in the fatty acid composition of major phospholipids and neutral lipids between drug and control-grown yeast were also detected. Sterol analysis of control-grown cells showed that the major sterol present was ergosterol (55.4% wt). A significant increase in ergosterol and obtusifoliol was observed in chlorhexidine-treated cells and a significant decrease in squalene and lanosterol. Our results suggested that chlorhexidine affected the lipid and sterol composition of C. albicans. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Growth and form in Candida albicans   总被引:3,自引:0,他引:3  
  相似文献   

3.
Candida albicans grown in dexamethasone (DXM) shows an apparent increase in dry weight. This increase, however, represents an artefact due to entrapment and incorporation of DXM by the yeast. Thus opportunistic infections by C. albicans which are promoted by DXM must be due entirely to effects other than growth enhancement of the organism.  相似文献   

4.
5.
The phospholipid and sterol composition of the plasma membranes of five fluconazole-resistant clinical Candida albicans isolates was compared to that of three fluconazole-sensitive ones. The three azole-sensitive strains tested and four of the five resistant strains did not exhibit any major difference in their phospholipid and sterol composition. The remaining strain (R5) showed a decreased amount of ergosterol and a lower phosphatidylcholine:phosphatidylethanolamine ratio in the plasma membrane. These changes in the plasma membrane lipid and sterol composition may be responsible for an altered uptake of drugs and thus for a reduced intracellular accumulation of fluconazole thereby providing a mechanism for azole resistance.  相似文献   

6.
Summary Subcultures ofC. albicans, made from Sabouraud agar, grown at room temperature for 48 hours, were inoculated into a 10 times saline dilution of Sabouraud liquid medium and left in the incubator for 45–60 minutes at 37° C, transferred to corn meal agar plates and incubated at 37° C for 18–24 hours.Small portions of the surface agar containing the yeasts from these plates were pressed under cover glasses and examined under the oil immersion lens.Under these conditions,C. albicans cultures were observed to produce only yeast-like cells, whereasC. stellatoidea cultures contained predominantly abundant, long, thin mycelia.  相似文献   

7.
The aim of this study was to evaluate the effect of the QS molecule farnesol on single and mixed species biofilms formed by Candida albicans and Streptococcus mutans. The anti-biofilm effect of farnesol was assessed through total biomass quantification, counting of colony forming units (CFUs) and evaluation of metabolic activity. Biofilms were also analyzed by scanning electron microscopy (SEM). It was observed that farnesol reduced the formation of single and mixed biofilms, with significant reductions of 37% to 90% and 64% to 96%, respectively, for total biomass and metabolic activity. Regarding cell viability, farnesol treatment promoted significant log reductions in the number of CFUs, ie 1.3–4.2 log10 and 0.67–5.32 log10, respectively, for single and mixed species biofilms. SEM images confirmed these results, showing decreases in the number of cells in all biofilms. In conclusion, these findings highlight the role of farnesol as an alternative agent with the potential to reduce the formation of pathogenic biofilms.  相似文献   

8.
Using EDTA and proteolytic enzymes to suppress hydrocarbon solubilization, direct evidence is presented in support of the mechanism of liquid hydrocarbon uptake by microbial cells predominantly from the solubilized or accommodated substrate. EDTA (2-5mM) strongly inhibited growth of three yeast species and one bacterial species on n-hexadecane and the inhibition was removed by surfactant-emulsified and surfactant-solubilized alkane and also by excess addition of Ca(2+). EDTA had no inhibitory effect on the growth of the organisms on soluble substrates such as sodium acetate and nutrient broth or on n-pentane, a volatile alkane which was primarily transported by diffusion from gas phase. EDTA was shown to have no significant effect on the adsorption of cells on alkane drops. EDTA inhibition of growth was considered to be due to suppression of alkane solubilization, brought about by the solubilizing factor(s) produced by cells. It was shown that this chelating agent did not inhibit the growth of yeast on solubilized alkane but strongly inhibited its growth on alkane drops. It was demonstrated that adherent capacity of microbial cell to oil phase was closely related to the state of hydrocarbon emulsification and had no relationship to the ability of organisms to grow on hydrocarbon. Certain proteolytic enzymes inhibited the growth of yeast on alkane, presumably by digesting the alkane solubilizing protein, but not on glucose, and the inhibition was removed by a supply of surfactant-emulsified and surfactant-solubilized alkane. Specific solubilization of various hydrocarbon types during growth of the prokaryotic bacterial strain was demonstrated. The specific solubilization of hydrocarbon was strongly inhibited strain was demonstrated. The specific solubilization of hydrocarbon was strongly inhibited by EDTA, and the inhibition was removed by excess Ca(2+). It was concluded that specific solubilization of hydrocarbons is an important mechanism in the microbial uptake of hydrocarbons.  相似文献   

9.
10.
Solubilized sterol C24-methyltransferase (24-SMT) was purified to homogeneity from a cell extract of the yeast Candida albicans (Ca) by anion exchange chromatography, gel permeation chromatography and fast performance liquid chromatography using a Mono Q column. The purified enzyme has an apparent molecular mass of 178 kDa on gel permeation chromatography and 43 kDa on SDS/PAGE, indicating that it is composed of four identical subunits. The substrate requirement of the native enzyme has an optimal specificity for zymosterol with associated kinetic constants of Km 50 μM and kcat of 0.01 s−1. The product of the enzyme incubated with zymosterol was fecosterol. Inhibition of the catalyst was observed with substrate analogs designed as transition state analogs (25-azalanosterol, Ki = 54 nM and 24 (R,S),25-epiminolanosterol, Ki = 11 nM) or as mechanism-based inactivators (26,27-dehydrozymosterol, Ki 9 μM) and kinact = 0.03 min−1) of the C24-methylation reaction. Product analogs ergosterol and fecosterol, but neither cholesterol nor sitosterol, inhibited activity affording Ki values of 20 and 72 μM, respectively. Ammonium and thia analogs of the intermediates of the sterol C24-methyl reaction sequence were effective growth inhibitors exhibiting IC50 values that ranged from 3 to 20 μM.  相似文献   

11.
Phosphate uptake studies in different strains of the dimorphic pathogenic yeast Candida albicans were undertaken to show that this yeast actively transported phosphate with an apparent Km in the range of 90-170 microM. The uptake was pH dependent and derepressible under phosphate starvation. Vanadate-resistant (van) mutants of C. albicans showed a 20-70% reduction in the rate of phosphate uptake in high phosphate medium and was associated with an increased Km and reduced Vmax. The magnitude of derepression under phosphate starvation was different between van mutants. These results demonstrate that van mutants may have developed resistance by modifying the rate of entry of vanadate.  相似文献   

12.
Numerous ultrastructural and biochemical analyses have been performed to characterize the cell wall composition and structure of Candida albicans. However, little investigation has focused on how subtle differences in cell wall structure influence the intracellular transport of amino acids and monosaccharides. In this study C. albicans 4918 and ATCC 10231 were grown in culture conditions capable of modifying surface mannoproteins and induced surface hydrophobic or hydrophilic yeast cell wall states. Subcultures of these hydrophobic and hydrophilic yeasts were subsequently incubated with one of seven L-[3H] amino acids: glycine, leucine, proline, serine, aspartic acid, lysine, or arginine. The transport of [3H] mannose and [3H] N-acetyl-D-glucosamine were also investigated. This study revealed significant strain differences (P < or = 0.05) between hydrophilic and hydrophobic yeast transport of these nutrients throughout a 2 h incubation. Hydrophilic cultures of 4918 and ATCC 10231 transported nearly two times more (pmol mg-1 dry weight) proline, mannose, and N-acetyl-D-glucosamine than hydrophobic yeast. Hydrophobic cultures preferentially incorporated serine and aspartic acid in both these strains. Strain variation was indicated with the transport of leucine, lysine, and arginine, as follows: experiments showed that hydrophilic 4918 cultures selectively transported leucine, lysine, and arginine, whereas, the hydrophobic ATCC 10231 cultures incorporated these amino acids.  相似文献   

13.
To determine whether Candida albicans acyl CoA:sterol acyltransferase (ASAT) can be a potential target enzyme for the protoberberine derivative (HWY-289), we have isolated a gene encoding Ca-ASAT and examined inhibitory effects of HWY-289 on the overexpressed Ca-ASAT. HWY-289 specifically inhibits Ca-ASAT in a non-competitive manner in vitro (IC(50) [9.2microM], K(i) [5.15microM]). The cloned CaARE2 gene (1830 nucleotides [nt]) encodes active Ca-ASAT protein that exhibits a calculated molecular mass of 71.3kDa. The amino acid sequence of CaAre2p is 33.4% and 35.1% identical to those of Saccharomyces cerevisiae ScAre1p and ScAre2p homologues, respectively. Recombinant and endogenous Ca-ASAT displayed identical patterns of inhibition upon exposure to HWY-289 and a preference for cholesterol and oleoyl-CoA as substrates. Northern blot analysis showed that CaARE2 was activated by HWY-289, but not by CI-976 (a human acyl-coenzyme A:cholesterol acyltransferase inhibitor), in a dose-dependent manner (up to 5mg/L), suggesting different selectivities of action between HWY-289 and CI-976 on Ca-ASAT activity.  相似文献   

14.
The transport of four amino acids (L-methionine, L-phenylalanine, L-lysine and L-alanine) was studied during pH-regulated dimorphism in Candida albicans and its stable, non-germinative variant. The permeases responsible for uptake responded differently to differentiation and the transport activities varied during the course of morphogenesis. An increase in uptake around the time of evagination was observed in all four amino acids in both the strains studied. The uptake rates of L-methionine and L-phenylalanine were greater in fully differentiated hyphae, while the rate of L-lysine was higher in fully differentiated buds. Uptake rates of L-alanine, however, did not show any morphotypic related variation. The possible implication of these transport activities in relation to differentiation is discussed.  相似文献   

15.
Growth and phase conversion of Candida albicans in Dubos medium   总被引:1,自引:0,他引:1  
S Bernander  L Edebo 《Sabouraudia》1969,7(2):146-155
  相似文献   

16.
In Candida albicans, cells actively growing in the budding form cannot be immediately induced to form a mycelium until they enter stationary phase. However, if exponential phase cells are starved for a minimum of 10 to 20 min, they are inducible. Using a video-monitored perfusion chamber, we found that starved cells were able to form mycelia regardless of their position in the budding cycle. When starved exponential cells were released into fresh nutrient medium at high temperature and pH, conditions conducive to mycelium formation, unbudded cells evaginated after an average lag period of 75 min and then grew exclusively in the mycelial form. Depending upon the volume, or maturity, of the bud, budded cells entered two different avenues of outgrowth leading to mycelium formation. If the daughter bud was small, growth resumed by apical elongation of the bud, leading to a 'shmoo' shape which tapered into an apical mycelium. If the daughter bud was large, the cell underwent a sequence of evaginations: first, the mother cell evaginated after an average period of 75 min; then the daughter bud evaginated 40 min later. Both evaginations then grew in the mycelial form. In this latter sequence, the evagination on the mother cell was positioned non-randomly, occurring in the majority of cells adjacent to the bud. All buds undergoing evagination contained a nucleus, but roughly 20% of buds undergoing apical elongation did not.  相似文献   

17.
Proline-induced germ-tube formation and cell-cell aggregation in four strains of Candida albicans were completely inhibited when the pH of the medium was 5.0 or lower, whereas morphogenesis induced by N-acetylglucosamine (GlcNAc) was unaffected even at pH 4.5. The pH sensitivity of proline-induced germ-tube formation was not caused by a modulation of proline uptake, which was unchanged over the pH range 4.5-6.5. The proline uptake system was specific, constitutive and subject to ammonium repression, and only one permease was detected, with a Km of 179 microM. Cultures deprived of nitrogen in the presence of glucose were derepressed for proline uptake but the yeast-mycelial transition could not be mediated by either proline or GlcNAc. The inhibition of morphogenesis was reversed when the nitrogen starvation was relieved by the addition of ammonium ions, proline, or certain amino acids. These results indicate that the nitrogen status of the cells is critical for the morphogenesis of C. albicans.  相似文献   

18.
目的探讨白假丝酵母菌的耐药情况及其与抗氰呼吸的相关性。方法用真菌药敏测定试剂盒测定从临床分离出来的37株白假丝酵母菌的耐药性,并从中选出5株耐药菌和5株敏感菌进行抗氰呼吸的研究。结果白假丝酵母菌对益康唑的耐药率最高,达54.1%,耐药白假丝酵母菌的抗氰呼吸速率均值为(17.56±6.75)nmol/(min.A620),敏感白假丝酵母菌的抗氰呼吸速率均值为(7.99±5.80)nmol/(min.A620),耐药白假丝酵母菌的抗氰呼吸速率明显升高,且耐药菌株抗氰呼吸速率占总呼吸的比例明显高于敏感菌株(P0.05),差异具有显著性。结论兰州市区白假丝酵母菌对益康唑耐药性较高,且白假丝酵母菌的耐药与抗氰呼吸途径相关。  相似文献   

19.
20.
Relationship between switching and mating in Candida albicans   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号