首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In Escherichia coli, the ribosome-associated chaperone Trigger Factor (TF) promotes the folding of newly synthesized cytosolic proteins. TF is composed of three domains: an N-terminal domain (N), which mediates ribosome binding; a central domain (P), which has peptidyl-prolyl cis/trans isomerase activity and is involved in substrate binding in vitro; and a C-terminal domain (C) with unknown function. We investigated the contributions of individual domains (N, P, and C) or domain combinations (NP, PC, and NC) to the chaperone activity of TF in vivo and in vitro. All fragments comprising the N domain (N, NP, NC) complemented the synthetic lethality of Deltatig DeltadnaK in cells lacking TF and DnaK, prevented protein aggregation in these cells, and cross-linked to nascent polypeptides in vitro. However, DeltatigDeltadnaK cells expressing the N domain alone grew more slowly and showed less viability than DeltatigDeltadnaK cells synthesizing either NP, NC, or full-length TF, indicating beneficial contributions of the P and C domains to TF's chaperone activity. In an in vitro system with purified components, none of the TF fragments assisted the refolding of denatured d-glyceraldehyde-3-phosphate dehydrogenase in a manner comparable to that of wild-type TF, suggesting that the observed chaperone activity of TF fragments in vivo is dependent on their localization at the ribosome. These results indicate that the N domain, in addition to its function to promote binding to the ribosome, has a chaperone activity per se and is sufficient to substitute for TF in vivo.  相似文献   

2.
The PrsA protein of Bacillus subtilis is an essential membrane-bound lipoprotein that is assumed to assist post-translocational folding of exported proteins and stabilize them in the compartment between the cytoplasmic membrane and cell wall. This folding activity is consistent with the homology of a segment of PrsA with parvulin-type peptidyl-prolyl cis/trans isomerases (PPIase). In this study, molecular modeling showed that the parvulin-like region can adopt a parvulin-type fold with structurally conserved active site residues. PrsA exhibits PPIase activity in a manner dependent on the parvulin-like domain. We constructed deletion, peptide insertion, and amino acid substitution mutations and demonstrated that the parvulin-like domain as well as flanking N- and C-terminal domains are essential for in vivo PrsA function in protein secretion and growth. Surprisingly, none of the predicted active site residues of the parvulin-like domain was essential for growth and protein secretion, although several active site mutations reduced or abolished the PPIase activity or the ability of PrsA to catalyze proline-limited protein folding in vitro. Our results indicate that PrsA is a PPIase, but the essential role in vivo seems to depend on some non-PPIase activity of both the parvulin-like and flanking domains.  相似文献   

3.
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes that catalyse protein folding both in vitro and in vivo. We isolated a peptidyl-prolyl cis/trans isomerase (PPIase) which is specifically associated with the 50S subunit of the Escherichia coli ribosome. This association was abolished by adding at least 1.5 M LiCl. Sequencing the N-terminal amino acids in addition to three proteolytic fragments totalling 62 amino acids revealed that this PPIase is identical to the E.coli trigger factor. A comparison of the amino acid sequence of trigger factor with those of other PPIase families shows little similarities, suggesting that trigger factor may represent an additional family of PPIases. Trigger factor was purified to homogeneity on a preparative scale from E.coli and its enzymatic properties were studied. In its activity towards oligopeptide substrates, the trigger factor resembles the FK506-binding proteins (FKBPs). Additionally, the pattern of subsite specificities with respect to the amino acid preceding proline in Suc-Ala-Xaa-Pro-Phe-4-nitroanilides is reminiscent of FKBPs. However, the PPIase activity of the trigger factor was not inhibited by either FK506 or by cyclosporin A at concentrations up to 100 microM. In vitro, the trigger factor catalysed the proline-limited refolding of a variant of RNase T1 much better than all other PPIases that have been examined so far.  相似文献   

4.
Recently the identity of the peptidyl-prolyl cis-trans isomerase (PPIase), which accelerates the cis/trans isomerization of prolyl peptide bonds and cyclophilin, the binding protein for the immunosuppressive drug Cyclosporin A (CsA), was discovered. The PPIase catalysis toward the substrate Suc-Ala-Phe-Pro-Phe-pNA has been studied by 1H NMR spectroscopy. Using the bandshape analysis technique the rate of interconversion between the cis and trans isomers of the substrate could be measured in the presence of PPIase and under equilibrium conditions. The acceleration is inhibited by equimolar amounts of CsA. The results provide evidence that the PPIase catalysis is more complex than a simple exchange between two states.  相似文献   

5.
Fractionation of proteins from the thylakoid lumen of spinach chloroplasts combined with peptidyl-prolyl cis/trans isomerase (PPIase) measurements revealed a major isomerase activity that was ascribed to a novel enzyme TLP20 (thylakoid lumen PPIase of 20 kDa). TLP20 was inhibited by cyclosporin A and mass spectrometric sequencing of tryptic peptides confirmed its classification as a cyclophilin. Genes encoding similar putative thylakoid cyclophilins with a unique insert of three amino acids NPV in their N-termini were found in chromosome 5 of both Arabidopsis and rice. TLP20 is suggested to be the major PPIase and protein folding catalyst in the thylakoid lumen of plant chloroplasts.  相似文献   

6.
Gram-negative phytopathogenic bacteria, such as Pseudomonas syringae, deliver multiple effector proteins into plant cells during infection. It is hypothesized that certain plant and mammalian effector proteins need to traverse the type III secretion system unfolded and are delivered into host cells as inactive enzymes. We have previously identified cyclophilin as the Arabidopsis eukaryotic activator of AvrRpt2, a P. syringae effector that is a cysteine protease. Cyclophilins are general folding catalysts and possess peptidyl-prolyl cis/trans isomerase (PPIase) activity. In this paper, we demonstrate the mechanism of AvrRpt2 activation by the Arabidopsis cyclophilin ROC1. ROC1 mutants lacking PPIase enzymatic activity were unable to activate AvrRpt2. Furthermore, nuclear magnetic resonance spectroscopy revealed a structural change in AvrRpt2 from an unfolded to a folded state in the presence of ROC1. Using in vitro binding assays, ROC1's consensus binding sequence was identified as GPxL, a motif present at four sites within AvrRpt2. The GPxL motifs are located in close proximity to AvrRpt2's catalytic triad and are required for protease activity both in vitro and in planta. These data suggest that after delivery into the plant cell during infection, cyclophilin binds AvrRpt2 at four sites and properly folds the effector protein by peptidyl-prolyl cis/trans isomerization.  相似文献   

7.
Parvulins belong to a family of peptidyl-prolyl cis/trans isomerases (PPIases) that catalyze the cis/trans conformations of prolyl-peptidyl bonds. Herein, we characterized two novel parvulins, TbPIN1 and TbPAR42, in Trypanosoma brucei. TbPIN1, a 115 amino-acid protein, contains a single PPIase domain but lacks the N-terminal WW domain. Using NMR spectroscopy, TbPIN1 was found to exhibit PPIase activity toward a phosphorylated substrate. Overexpression of TbPIN1 can rescue the impaired temperature-sensitive phenotype in a mutant yeast strain. TbPAR42, containing 383 amino acids, comprises a novel FHA domain at its N terminus and a C-terminal PPIase domain but is a non-Pin1-type PPIase. Functionally, a knockdown of TbPAR42 in its procyclic form results in reduced proliferation rates suggesting an important role in cell growth.  相似文献   

8.
Trigger factor (TF) is the first chaperone encountered by nascent chains in bacteria, which consists of two modules: peptidyl-prolyl-cis/trans-isomerase (PPIase) domain and a crevice built by both N- and C-terminal domains. While the crevice is suggested to provide a protective space over the peptide exit site of ribosome for nascent polypeptides to fold, it remains unclear whether PPIase domain is directly involved in assisting protein folding. Here, we introduced structural change into different regions of TF, and investigated their influence on the chaperone function of TF in assisting the folding of various substrate proteins, including oligomeric glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and monomeric carbonic anhydrase II (CA II) and lysozyme. Results showed that structural disturbances by site-specific mutations in the PPIase active site or by deletion of the PPIase domain from TF affected the chaperone activity of TF toward CA II and GAPDH but had no effect on TF-assisted lysozyme refolding, suggesting PPIase domain is involved in assisting the folding of substrates larger than lysozyme. Mutants with the structural disturbances in the crevice totally lost the chaperone activity toward all the substrates we used in this investigation. These results provide further evidence to confirm that the crevice is the major chaperone site of TF, and the hydrophobic pocket in PPIase domain acts as an auxiliary site to assist the folding of substrate proteins bound to the crevice in a substrate-dependent manner, which is beneficial for TF to provide appropriate assistance for protein folding by changing protective space and binding affinity.  相似文献   

9.
The nature of molecular chaperones in the periplasm of Escherichia coli that assist newly translocated proteins to reach their native state has remained poorly defined. Here, we show that FkpA, a heat shock periplasmic peptidyl-prolyl cis/trans isomerase (PPIase), suppresses the formation of inclusion bodies from a defective-folding variant of the maltose-binding protein, MalE31. This chaperone-like activity of FkpA, which is independent of its PPIase activity, requires a full-length structure of the protein. In vitro, FkpA does not catalyse a slow rate-limiting step in the refolding of MalE31, but prevents its aggregation at stoichiometric amounts and promotes the reactivation of denaturated citrate synthase. We propose that FkpA functions as a chaperone for envelope proteins in the bacterial periplasm.  相似文献   

10.
Trigger factor (TF) plays a key role as a molecular chaperone with a peptidyl-prolyl cis–trans isomerase (PPIase) activity by which cells promote folding of newly synthesized proteins coming out of ribosomes. Since psychrophilic bacteria grow at a quite low temperature, between 4 and 15°C, TF from such bacteria was investigated and compared with that of mesophilic bacteria E. coli in order to offer an explanation of cold-adaptation at a molecular level. Using a combination of gradient PCRs with homologous primers and LA PCR in vitro cloning technology, the tig gene was fully identified from Psychromonas arctica, whose genome sequence is not yet available. The resulting amino acid sequence of the TF was compared with other homologous TFs using sequence alignments to search for common domains. In addition, we have developed a protein expression system, by which TF proteins from P. arctica (PaTF) were produced by IPTG induction upon cloning the tig gene on expression vectors, such as pAED4. We have further examined the role of expressed psychrophilic PaTF on survival against cold treatment at 4°C. Finally, we have attempted the in vitro biochemical characterization of TF proteins with His-tags expressed in a pET system, such as the PPIase activity of PaTF protein. Our results demonstrate that the expressed PaTF proteins helped cells survive against cold environments in vivo and the purified PaTF in vitro display the functional PPIase activity in a concentration dependent manner.  相似文献   

11.
Trigger factor (TF) is a ribosome-bound protein that combines catalysis of peptidyl-prolyl isomerization and chaperone-like activities in Escherichia coli. TF was shown to cooperate with the DnaK (Hsp70) chaperone machinery in the folding of newly synthesized proteins, and the double deletion of the corresponding genes (tig and dnaK) exhibited synthetic lethality. We used a detailed genetic approach to characterize various aspects of this functional cooperation in vivo. Surprisingly, we showed that under specific growth conditions, one can delete both dnaK and tig, indicating that bacterial survival can be maintained in the absence of these two major cytosolic chaperones. The strain lacking both DnaK and TF exhibits a very narrow temperature range of growth and a high level of aggregated proteins when compared to either of the single mutants. We found that, in the absence of DnaK, both the N-terminal ribosome-binding domain and the C-terminal domain of unknown function are essential for TF chaperone activity. In contrast, the central PPIase domain is dispensable. Taken together, our data indicate that under certain conditions, folding of newly synthesized proteins in E. coli is not totally dependent on an interaction with either TF and/or DnaK, and suggest that additional chaperones may be involved in this essential process.  相似文献   

12.
Two functionally redundant enzymes, trigger factor and the hsp70 chaperone DnaK, have been found to assist de novo protein folding in E coli. Trigger factor is a peripheral peptidyl prolyl cis/trans isomerase (PPIase) of the large subunit of the ribosome. In contrast, DnaK displays two catalytic features: the secondary amide peptide bond cis/trans isomerase (APIase) function supplemented by the ATPase site. APIases accelerate the cis/trans isomerization of nonprolyl peptide bonds. Both enzymes have affinity for an unfolded polypeptide chain. The diminished low temperature cell viability in the presence of trigger factor variants with impaired PPlase activity indicates that the enhancement of folding rates plays a crucial role in protein folding in vivo. For the DnaK-mediated increase in the folding yield in vitro, the minimal model for APlase catalysis involves the catalyzed partitioning of a rapidly formed folding intermediate as could be inferred from the DnaK/DnaJ/GrpE/ATP-assisted refolding of GdmCl-denatured luciferase. Using three different peptide bond cis/trans isomerization assays in vitro, we could show that there is no overlapping substrate specificity of trigger factor and DnaK. We propose that only if trigger factor recruits supplementing molecules is it capable of exhibiting functional complementarity with DnaK in protein folding.  相似文献   

13.
Li ZY  Liu CP  Zhu LQ  Jing GZ  Zhou JM 《FEBS letters》2001,506(2):108-112
To investigate the molecular chaperone function of trigger factor (TF) and its relationship with isomerase activity in vivo, the assisted folding of adenylate kinase (AK) by TF in Escherichia coli was examined by measuring the amounts of soluble AK produced during co-expression. When the mutant of chicken AK, P17G, is expressed in plasmid pBVAK, 95% of the protein is found in inclusion bodies. Co-expression of AK with TF was achieved using a plasmid pBVAT that allowed expression of TF and AK in the same plasmid under separate control. Co-expression with TF resulted in an increase in the amount of soluble AK, with a higher increase when TF was expressed at higher levels in the cell. Co-expression of AK with the two TF mutants, Y221G and F233Y, in which peptidyl-prolyl cis/trans isomerase activity was 1% of wild-type, gave the same results as wild-type TF. This provides in vivo evidence that the molecular chaperone activity of TF is distinct from its isomerase activity.  相似文献   

14.
Macrophage infectivity potentiators (MIPs) are a family of surface-exposed virulence factors of intracellular microorganisms such as Legionella, Chlamydia and Trypanosoma. These proteins display peptidyl-prolyl cis/trans isomerase (PPIase) activity that is inhibited by immunosuppressants FK506 and rapamycin. Here we describe the identification and characterization in Neisseria gonorrhoeae of Ng-MIP, a surface-exposed lipoprotein with high homology to MIPs. The protein is an homodimer with rapamycin-inhibited PPIase activity confirming that it is a functional member of the MIP family. A knock-out strain, generated by deletion of the mip gene in N. gonorrhoeae F62 strain, was evaluated for its role in infection of mouse and human macrophages. We show that Ng-MIP promotes the intracellular survival of N. gonorrhoeae in macrophages, highlighting a possible role of this protein in promoting the persistence of gonococcal infection.  相似文献   

15.
Peptidyl-prolyl cis/trans isomerases (PPIases) catalyze the isomerization of prolyl peptide bonds. Distinct families of this class of enzymes are involved in protein folding in vitro, whereas their significance in free living organisms is not known. Previously, we inspected the smallest known genome of a self-replicating organism and found that Mycoplasma genitalium is devoid of all known PPIases except the trigger factor. Despite the extensive sequence information becoming available, most genes remain hypothetical and enzyme activities in many species have not been assigned to an open reading frame. Therefore, we studied the PPIase activity in crude extracts of M. genitalium. We showed that this is solely attributed to a single enzyme activity, the trigger factor. Characterization of this enzyme revealed that its PPIase activity resides in a central 12-kDa domain. Only the complete trigger factor is able to cis/trans isomerize extended peptide substrates, while the PPIase domain alone can not. The N- and the C-terminal domains of the trigger factor seem to function in binding of proteins as substrates, as demonstrated by protein refolding experiments, in which the complete trigger factor catalyzed protein refolding towards a model protein 500-fold more efficiently than the isolated central PPIase domain. Protein modeling studies suggest that the PPIase domain can fold in a similar way as the PPIase domain of FK506 binding proteins (FKBPs), one class of PPIases, despite only very limited sequence homology. Differences at the active site explain why this enzyme is not inhibited by FK506 in contrast with FKBPs. Trigger factor expressed in Escherichia coli confirms its additional chaperone functions, as shown by its association with chaperones GroEL and GroES after induction of misfolding. In contrast, the isolated PPIase-domain lacks any association with chaperones from E. coli. In summary, trigger factor of M. genitalium is the single folding isomerase of this organism, which harbors an enzymatically active PPIase domain with structural homology to FKBPs. Its additional domains confer its ability to be an efficient catalyst of protein folding. The protein folding machinery is conserved and shows a dual function as a chaperone and a prolyl isomerase.  相似文献   

16.
Cyclophilins (E.C. 5.1.2.8) are protein chaperones with peptidyl-prolyl cis/trans isomerase activity (PPIase). In the present study, we demonstrate a physical interaction among AvppiB, encoding the cytoplasmic cyclophilin from the soil nitrogen-fixing bacterium Azotobacter vinelandii, and AvaccC, encoding the biotin carboxylase subunit of acetyl-CoA carboxylase, which catalyzes the committed step in long-chain fatty acid synthesis. A decrease in AvppiB PPIase activity, in the presence of AvaccC, further confirms the interaction. However, PPIase activity seems not to be essential for these interactions since a PPIase active site mutant of cyclophilin does not abolish the AvaccC binding. We further show that the presence of cyclophilin largely influences the measured ATP hydrolyzing activity of AvaccA in a way that is negatively regulated by the PPIase activity. Taken together, our data support a novel role for cyclophilin in regulating biotin carboxylase activity.  相似文献   

17.
Legionella pneumophila is an intracellular parasite which is able to survive and multiply in human monocytes and alveolar macrophages. The Mip (macrophage infectivity potentiator) protein has been shown to be an essential virulence factor. A search of translated nucleic acid data bases has shown that the Mip protein from strain Wadsworth possesses regions homologous to those found in the FK506-binding proteins (FKBPs) of several different eukaryotic organisms. FKBPs are able to bind to the immunosuppressant macrolide FK506 and possess peptidyl-prolyl cis/trans isomerase (PPIase) activity. The gene coding for the Mip protein was cloned from the chromosome of L. pneumophila strain Philadelphia I and sequenced. It was synthesized in Escherichia coli K-12 and after purification it exhibited PPIase activity catalysing the slow cis/trans isomerization of prolyl peptide bonds in oligopeptides. Mip is inhibited by FK506 and fully resistant to cyclosporin A, as was also found for the recently characterized FKBP-type PPIases of eukaryotes. However, the N-terminal extension of Mip and/or the substitutions of the variable amino acids in the C-terminal FKBP core leads to variations, when compared with eukaryotic FKBPs, in substrate specificity with the oligopeptide substrates of type Suc-Ala-Xaa-Pro-Phe-4-nitroanilide. Nevertheless, the Legionella Mip factor represents a bacterial gene product which shares some characteristics normally found in eukaryotic proteins. In view of the activity of PPIases in protein-folding reactions, such prokaryotic FKBP analogues may represent a new class of bacterial pathogenicity factors.  相似文献   

18.
Liu CP  Li ZY  Huang GC  Perrett S  Zhou JM 《Biochimie》2005,87(11):1023-1031
Trigger factor (TF) is an important catalyst of nascent peptide folding and possesses both peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities. TF has a modular structure, containing three domains with distinct structural and functional properties. The guanidine hydrochloride (GuHCl) induced unfolding of TF was investigated by monitoring Trp fluorescence, far-UV CD, second-derivative UV absorption, enzymatic and chaperone activities, chemical crosslinking and binding of the hydrophobic dye, 1-anilinonaphthalene-8-sulfonate (ANS); and was compared to the urea induced unfolding. The native state of TF was found to bind ANS in 1:1 stoichiometry with a K(d) of 84 microM. A native-like state, N', is stable around 0.5 M GuHCl, and shows increased ANS binding, while retaining PPIase activity and most secondary and tertiary structure, but loses chaperone and dimerization activities, consistent with slight conformational rearrangement. A compact denatured state, I, is populated around 1.0 M GuHCl, is inactive and does not show significant binding to ANS. The data suggest that TF unfolds in a stepwise manner, consistent with its modular structure. The ability of TF to undergo structural rearrangement to maintain enzymatic activity while reducing chaperone and dimerization abilities may be related to the physiological function of TF.  相似文献   

19.
The protein FkpA from the periplasm of Escherichia coli exhibits both cis/trans peptidyl-prolyl isomerase (PPIase) and chaperone activities. The crystal structure of the protein has been determined in three different forms: as the full-length native molecule, as a truncated form lacking the last 21 residues, and as the same truncated form in complex with the immunosuppressant ligand, FK506. FkpA is a dimeric molecule in which the 245-residue subunit is divided into two domains. The N-terminal domain includes three helices that are interlaced with those of the other subunit to provide all inter-subunit contacts maintaining the dimeric species. The C-terminal domain, which belongs to the FK506-binding protein (FKBP) family, binds the FK506 ligand. The overall form of the dimer is V-shaped, and the different crystal structures reveal a flexibility in the relative orientation of the two C-terminal domains located at the extremities of the V. The deletion mutant FkpNL, comprising the N-terminal domain only, exists in solution as a mixture of monomeric and dimeric species, and exhibits chaperone activity. By contrast, a deletion mutant comprising the C-terminal domain only is monomeric, and although it shows PPIase activity, it is devoid of chaperone function. These results suggest that the chaperone and catalytic activities reside in the N and C-terminal domains, respectively. Accordingly, the observed mobility of the C-terminal domains of the dimeric molecule could effectively adapt these two independent folding functions of FkpA to polypeptide substrates.  相似文献   

20.
FK506-binding proteins (FKBPs) and cyclophilins, collectively called immunophilins, conserve peptidyl-prolyl cis/trans isomerase (PPIase) active sites, although many lack PPIase activity. The chloroplast thylakoid contains a large proportion of the plant immunophilin family, but their functions within this compartment are unclear. Some lumenal immunophilins are important for assembly of photosynthetic complexes, implicating them in the maintenance and turnover of the photosynthetic apparatus during acclimation processes. In this investigation into the functions of three FKBPs localized to the thylakoid of Triticum aestivum (wheat), we present the first evidence of PPIase activity in the thylakoid of a cereal plant, and also show that PPIase activity is not conserved in all lumenal FKBPs. Using yeast two-hybrid analysis we found that the PPIase-active FKBP13 interacts with the globular domain of the wheat Rieske protein, with potential impact on photosynthetic electron transfer. Specific interaction partners for PPIase-deficient FKBP16-1 and FKBP16-3 link these isoforms to photosystem assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号