首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence in situ hybridisation (FISH) has become one of the major techniques in environmental microbiology. The original version of this technique often suffered from limited sensitivity due to low target copy number or target inaccessibility. In recent years there have been several developments to amend this problem by increasing signal intensity. This review summarises various approaches for signal amplification, focussing especially on two widely recognised varieties, tyramide signal amplification and multiply labelled polynucleotide probes. Furthermore, new applications for FISH are discussed, which arise from the increased sensitivity of the method.  相似文献   

2.
Using single primer pairs Y3 and Y4, in siru polymerase chain reaction (in situ PCR) was successfully performed on the specimen slides of peripheral leukocytes. By both of the direct digpxiginin-11-dUTP incorporation into PCR products with in situ PCR (direct in situ PCR) and in situ PCR followed by detection of in situ hybridization (indirect in siru PCR), DNA fragments specific for human Y chromosome were obviously amplified in cellular nuclei of specimens on the slides. The results were verified by Southern analysis. The methodology of in situ PCR and its application were discussed.  相似文献   

3.
4.
A multicolor procedure employing fluorescence in situ hybridization is described for detecting chromosomal domains and germinal aneuploidy in late-step spermatids in mice using DNA probes specific for repetitive sequences near the centromeres of chromosomes 8 and X. These probes were nick-translated with biotin- or digoxigenin-labeled nucleotides, and were detected with FITC or rhodamine. Probe and hybridization specificities were confirmed using metaphase chromosomes from spleen and bone marrow cells as well as from primary and secondary spermatocytes. Late-step spermatids, identified in testicular preparations by their hooked shape, yielded compact fluorescence domains in ~ 50% and > 99% of cells when hybridized with probes for chromosomes X and 8, respectively. In a survey of > 80,000 late-step spermatids from 8 healthy young adult C57BL/6 or B6C3F1 mice, ~ 3/10,000 spermatids had fluorescence phenotypes indicative of X-X or 8–8 hyperhaploidy. These frequencies are consistent with published frequencies of aneuploidy in meiotic metaphase II and first cleavage metaphases of the mouse, providing preliminary validation of sperm hybridization for the detection of aneuploidy. No significant animal or strain differences were observed. In addition, the hyperhaploidy frequencies for murine spermatids were indistinguishable for those for sperm from healthy men obtained by a similar hybridization procedure. These procedures for detecting aneuploid male gametes are examples of “bridging biomarkers” between human and animal studies. They have promising applications for investigations of the genetic, reproductive, and toxicological factors leading to abnormal reproductive outcomes of paternal origin. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Single nucleotide polymorphisms are the most common polymorphism in plant and animal genomes and, as such, are the logical choice for marker-assisted selection. However, many plants are also polyploid, and marker-assisted selection can be complicated by the presence of highly similar, but non-allelic, homoeologous sequences. Despite this, there is practical and academic demand for high-throughput genotyping in several polyploid crop species, such as allohexaploid wheat. In this paper, we present such a system, which utilizes public single nucleotide polymorphisms previously identified in both agronomically important genes and in randomly selected, mapped, expressed sequence tags developed by the wheat community. To achieve relatively high levels of multiplexing, we used non-amplified genomic DNA and padlock probe pairs, together with high annealing temperatures, to differentiate between similar sequences in the wheat genome. Our results suggest that padlock probes are capable of discriminating between homoeologous sequences and hence can be used to efficiently genotype wheat varieties.  相似文献   

6.
In situ hybridization in Actinidia using repeat DNA and genomic probes   总被引:4,自引:0,他引:4  
 In situ hybridization has been used to probe chromosome spreads of hexaploid Actinidia deliciosa (kiwifruit; 2n=6x=174) and tetraploid A. chinensis (2n=4x=116). When a species-specific repeat sequence, pKIWI516, was used, six hybridization sites were observed in some accessions of tetraploid A. chinensis and all of A. deliciosa. Southern analysis with the pKIWI516 probe revealed that there are two types of tetraploid A. chinensis. Genomic probes from diploid A. chinensis (2n=2x=58) did not differentiate the genomes of hexaploid A. deliciosa and tetraploid A. chinensis, irrespective of the presence or absence of blocking DNA. The results indicate that the genomes of polyploid Actinidia species are similar but not identical. The origin of A. deliciosa is discussed. Received: 29 June 1996 / Accepted: 5 July 1996  相似文献   

7.
The increasing significance of members of the genus Sphingomonas in biotechnological applications has led to an increased interest in the diversity, abundance and ecophysiological potential of this group of Gram-negative bacteria. This general focus provides a challenge to improve means for identification of sphingomonads; eg molecular genetic methods for rapid and specific detection could facilitate screening of new isolates. Here, fluorescently labeled oligonucleotide probes targeted against 16S rRNA were used to typify strains previously assigned to the genus. All 46 sphingomonads tested including type strains of 21 Sphingomonasspecies could be detected with a probe originally designed for the genus and all but one with a probe designed for the alpha-4 subgroup of the Proteobacteria. The two probes are suitable for direct detection of sphingomonads in pure and mixed cultures as well as in environmental samples of unknown composition. The probes were used to identify sphingomonads in situ in activated sludge samples. Sphingomonads were rather abundant accounting for about 5–10% of the total cells in municipal sludges. Distinct patterns in aggregation of the cells suggest that these organisms could be involved in the formation process of sludge flocs. Received 27 May 1999/ Accepted in revised form 22 August 1999  相似文献   

8.
 Fluorescence in situ hybridization (FISH) with multiple probes has been applied to meiotic chromosome spreads derived from ph1b common wheat x rye hybrid plants. The probes used included pSc74 and pSc 119.2 from rye (the latter also hybridizes on wheat, mainly B genome chromosomes), the Ae. squarrosa pAs1 probe, which hybridizes almost exclusively on D genome chromosomes, and wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH with a two-by-two combination of these probes allowed unequivocal identification of all of the rye (R) and most of the wheat (W) chromosomes, either unpaired or involved in pairing. Thus not only could wheat-wheat and wheat-rye associations be easily discriminated, which was already feasible by the sole use of the rye-specific pSc74 probe, but the individual pairing partners could also be identified. Of the wheat-rye pairing observed, which averaged from about 7% to 11% of the total pairing detected in six hybrid plants of the same cross combination, most involved B genome chromosomes (about 70%), and to a much lesser degree, those of the D (almost 17%) and A (14%) genomes. Rye arms 1RL and 5RL showed the highest pairing frequency (over 30%), followed by 2RL (11%) and 4RL (about 8%), with much lower values for all the other arms. 2RS and 5RS were never observed to pair in the sample analysed. Chromosome arms 1RL, 1RS, 2RL, 3RS, 4RS and 6RS were observed to be exclusively bound to wheat chromosomes of the same homoeologous group. The opposite was true for 4RL (paired with 6BS and 7BS) and 6RL (paired with 7BL). 5RL, on the other hand, paired with 4WL arms or segments of them in more than 80% of the cases and with 5WL in the remaining ones. Additional cases of pairing involving wheat chromosomes belonging to more than one homoeologous group occurred with 3RL, 7RS and 7RL. These results, while adding support to previous evidence about the existence of several translocations in the rye genome relative to that of wheat, show that FISH with multiple probes is an efficient method by which to study fundamental aspects of chromosome behaviour at meiosis, such as interspecific pairing. The type of knowledge attainable from this approach is expected to have a significant impact on both theoretical and applied research concerning wheat and related Triticeae. Received: 21 February 1996 / Accepted: 12 July 1996  相似文献   

9.
In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with alpha-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.  相似文献   

10.
Fluorescence in situ hybridization (FISH) with DNA probes specific to chromosomes 17 and the X has been applied to human ejaculated sperm. After sperm nuclei were decondensed with EDTA and DTT, biotinylated alpha satellite DNA probes TR17 and TRX were separately used on preparations from thirteen healthy donors. After hybridization 96% of sperm were labelled with the TR17 probe and 48% of sperm were labelled with the TRX probe. Frequencies of 0.33% disomic 17 and 0.29% disomic X sperm were found. The frequencies of diploid sperm were assessed as 0.37% using the TR17 probe and 0.20% using the TRX probe which labelled only one half of the sperm; after correcting the result from the X-probe to 0.40% the two frequencies are very similar.  相似文献   

11.
12.
Aneuploidy estimates for chromosomes 1, 12, X, and Y were obtained in human sperm from five donors using multicolor fluorescence in situ hybridization (FISH) analysis. Disomy frequencies were obtained by scoring a minimum of 10,000 sperm for each chromosome probe per donor. This analysis was replicated for two scoring criteria: one used one half of a signal domain as the minimum distance between two signals to be counted as two and thus disomic; the other set one signal domain as the minimum distance between two signals. A total of 120,870 sperm were assessed using one half of a domain as the criterion, and 113,478 were scored using one domain as the criterion. The percentage of disomy for chromosomes 1, 12, X, Y, and XY was 0.18, 0.16, 0.15, 0.19, and 0.25, respectively, using the one-half-domain criterion, and 0.08, 0.17, 0.07, 0.12, and 0.16, respectively, using the one-domain criterion. The percentage of disomy decreased significantly with use of one domain as the minimum distance for signal separation for all chromosomes except for chromosome number 12. These lower disomy frequencies correlated well with frequencies derived from human sperm karyotypes analyzed in our laboratory. This suggests that the fluorescent signals for chromosomes 1, X, and Y split into more than one domain in decondensed interphase sperm, and that the use of the one-half-domain criterion would lead to an overestimate of aneuploidy frequencies. The factors known to affect aneuploidy estimates derived from FISH studies are discussed, and recommendations for stringent scoring criteria are proposed. © 1995 wiley-Liss, Inc.  相似文献   

13.
Discrimination between complete moles (CMs), partial moles (PMs), and hydropic abortions (HAs) is important as the risk of persistent gestational trophoblastic disease (GTD) differs for each condition. We evaluated whether ancillary fluorescence in situ hybridization (FISH) with a set of chromosome enumeration probes (CEP) for chromosomes X, Y, and 17 and p57 immunostaining could improve the clinical diagnosis. Forty-one products of conception (POC) were reclassified according to clinical performance, morphology, p57 immunostaining results, and FISH results. The accuracy of histological examination alone was 85% for the original diagnosis. FISH analysis showed diploidy in 19 of 20 CMs and triploidy in 4 of 6 PMs. The concordance rate was 92.5% on using the CEP probes. p57 Staining was negative in all CMs and positive in all PMs and HAs. Chromosomal abnormality was detected in 3 cases of HA by using FISH. In conclusion, combined p57 immunostaining and FISH with a set of 3 CEP probes for chromosomes X, Y, and 17 could be useful in the classification of hydatidiform moles.  相似文献   

14.
15.
16.
Individual chromosomes can be identified by means of in situ hybridization with DNA probes for chromosome-specific repetitive sequences. The efficiency and sensitivity of the method are strictly dependent on the characteristics of the probes and the experimental conditions. Using three probes with different copy numbers, we demonstrated that the target chromosomes can be visualized in interphase when the homologous sequences are repeated at least 50 times.Possible applications of interphase analysis to clinical cytogenetics and mutagenicity testing are discussed.  相似文献   

17.
Molecular genotyping has important biomedical and forensic applications. However, limiting amounts of human biological material often yield genomic DNA (gDNA) in insufficient quantity and of poor quality for a reliable analysis. This motivated the development of an efficient whole genome amplification method with quantitatively unbiased representation usable on fresh and degraded gDNA. Amplification of fresh frozen, formalin-fixed paraffin-embedded (FFPE) and DNase-degraded DNA using degenerate oligonucleotide-primed PCR or primer extension amplification using a short primer sequence bioinformatically optimized for coverage of the human genome was compared with amplification using current primers by chromosome-based and BAC-array comparative genomic hybridization (CGH), genotyping at short tandem repeats (STRs) and single base mutation detection. Compared with current primers, genome amplification using the bioinformatically optimized primer was significantly less biased on CGH in self-self hybridizations, and replicated tumour genome copy number aberrations, even from FFPE tissue. STR genotyping could be performed on degraded gDNA amplified using our technique but failed with multiple displacement amplification. Of the 18 different single base mutations 16 (89.5%) were correctly identified by sequencing gDNA amplified from clinical samples using our technique. This simple and efficient isothermal method should be helpful for genetic research and clinical and forensic applications.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号