首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

The reduction in nematode population levels achieved by soil solarization and nematicides in nursery beds resulted in significantly improved health of the rice seedlings which when transplanted in the main field gave better control in treated and untreated in the main field. Application of nematicides phorate or carbofuran after soil solarization gave greater reduction in nematode infection and increased weight. However, soil solarization had the major influence. Further application of the nematicides in the solarized main field gave 53.2% higher yield over untreated control which was only 3.8% higher than that from untreated main field. Soil solarization could be a practical, feasible and environmentally safer alternative to nematicides.  相似文献   

2.
Nematode-resistant tropical legumes are effective in reducing populations of plant-parasitic nematodes when used in rotation systems. Mixed cropping is a common practice of many small farmers in Central America, but little is known about the effects of tropical legumes on nematode communities under these systems. To examine the effects of intercropping on the nematode fauna associated with squash (Cucurbita pepo) and cucumber (Cucumis sativa) in Honduras, two field experiments were conducted to compare nematode density and diversity in soil under cucurbits grown as a monocrop with that in soil under cucurbits intercropped with alfalfa (Medicago sativa) or hairy indigo (Indigofera hirsuta). A parallel series of field tests compared soil nematode communities associated with a cucurbit monocrop and a cucurbit intercropped with marigold (Tagetes patula), which may decrease nematode populations through the production of toxic root exudates. Among all four tests, over a period of 90 days, there were no consistent differences in densities of various nematode genera or trophic groups in intercropped versus monocropped plants, nor were there consistent differences in community diversities among treatments.  相似文献   

3.
氮沉降对土壤线虫群落影响的研究进展   总被引:1,自引:0,他引:1  
综述了主要陆地生态系统(草原、农田和森林)土壤线虫群落对氮沉降增加的响应格局和机制。总体上,氮沉降增加对线虫数量一般无显著影响,但增加了土壤中富集机会主义者(即低营养级的r-策略者)数量,降低了线虫群落成熟度指数(MI),表明氮沉降增加可能会使土壤食物网简化。氮沉降增加主要通过改变土壤微环境(如增加含氮离子浓度、降低土壤pH)直接影响土壤线虫群落,或者改变植物地上地下资源的输入和线虫与其他土壤动物的关系,间接影响线虫群落。最后,根据目前研究现状,指出了当前研究存在的局限性,包括研究时间和空间尺度上以及研究技术手段上的局限。建议综合多个全球环境变化因子,并结合室内试验及分子手段的方法对土壤线虫群落进行研究。  相似文献   

4.
Reflections on Plant and Soil Nematode Ecology: Past,Present and Future   总被引:1,自引:0,他引:1  
The purpose of this review is to highlight key developments in nematode ecology from its beginnings to where it stands today as a discipline within nematology. Emerging areas of research appear to be driven by crop production constraints, environmental health concerns, and advances in technology. In contrast to past ecological studies which mainly focused on management of plant-parasitic nematodes, current studies reflect differential sensitivity of nematode faunae. These differences, identified in both aquatic and terrestrial environments include response to stressors, environmental conditions, and management practices. Methodological advances will continue to influence the role nematodes have in addressing the nature of interactions between organisms, and of organisms with their environments. In particular, the C. elegans genetic model, nematode faunal analysis and nematode metagenetic analysis can be used by ecologists generally and not restricted to nematologists.  相似文献   

5.
The effects of agricultural management on the soil nematode community were investigated in a field study at depths of 0 to 10 cm and 10 to 20 cm during a peanut (Arachis hypogaea) growing season in Israel. Nineteen nematode families and 23 genera were observed. Rhabditidae, Cephalobus, Eucephalobus, Aphelenchus, Aphelenchoides, Tetylenchus, Tylenchus, Dorylaimus, and Discolaimus were the dominant family and genera. Ecological measures of soil nematode community structure, diversity, and maturity indices were assessed and compared between the managed (by fertilization, irrigation, and pesticide application) and unmanaged fields. The total number of nematodes at a 10-cm depth during peanut-sowing, mid-season, and harvest periods was higher in the treated (managed) plot than in the control (unmanaged) plot. Bacterivores and fungivores were the most abundant trophic groups in both plots and both depths. The relative abundance of each group averaged 60.8 to 67.3% and 11.5 to 19.6% of the nematode community, respectively. Plant parasites and omnivores-predators at the 0 to 10-cm depth were much less abundant than any other two groups in our experimental plots. During the growing season, except the harvest period, populations of plant parasites and omnivores-predators at the 10 to 20-cm depth were lower in the treated plot than in the control plot. Maturity index (MI), plant-parasite index (PPI), and ratio of fungivores and bacterivores to plant parasites (WI) were found to be more sensitive indicators than other ecological indices for assessing the response of nematode communities to agricultural management in an Israeli agroecosystem.  相似文献   

6.
Field experiments were conducted in Maryland to investigate the influence of sunn hemp cover cropping in conjunction with organic and synthetic fertilizers on the nematode community in a zucchini cropping system. Two field treatments, zucchini planted into a sunn hemp living and surface mulch (SH) and zucchini planted into bare-ground (BG) were established during three field seasons from 2009 to 2011. In 2009, although SH slightly increased nematode richness compared with BG by the first harvest (P < 0.10), it reduced nematode diversity and enrichment indices (P < 0.01 and P < 0.10, respectively) and increased the channel index (P < 0.01) compared to BG at the final harvest. This suggests a negative impact of SH on nematode community structure. The experiment was modified in 2010 and 2011 where the SH and BG main plots were further split into two subplots to investigate the added influence of an organic vs. synthetic fertilizer. In 2010, when used as a living and surface mulch in a no-till system, SH increased bacterivorous, fungivorous, and total nematodes (P < 0.05) by the final zucchini harvest, but fertilizer type did not influence nematode community structure. In 2011, when incorporated into the soil before zucchini planting, SH increased the abundance of bacterivorous and fungivorous nematodes early in the cropping season. SH increased species richness also at the end of the season (P < 0.05). Fertilizer application did not appear to influence nematodes early in the season. However, in late season, organic fertilizers increased enrichment and structure indices and decreased channel index by the end of the zucchini cropping cycle.  相似文献   

7.
Sunn hemp (SH), Crotolaria juncea, is known to suppress Rotylenchulus reniformis and weeds while enhancing free-living nematodes involved in nutrient cycling. Field trials were conducted in 2009 (Trial I) and 2010 (Trial II) to examine if SH cover cropping could suppress R. reniformis and weeds while enhancing free-living nematodes if integrated with soil solarization (SOL). Cover cropping of SH, soil solarization, and SH followed by SOL (SHSOL) were compared to weedy fallow control (C). Rotylenchulus reniformis population was suppressed by SHSOL at the end of cover cropping or solarization period (Pi) in Trial I, but not in Trial II. However, SOL and SHSOL did not suppress R. reniformis compared to SH in either trial. SH enhanced abundance of bacterivores and suppressed the % herbivores only at Pi in Trial II. At termination of the experiment, SH resulted in a higher enrichment index indicating greater soil nutrient availability, and a higher structure index indicating a less disturbed nematode community compared to C. SOL suppressed bacterivores and fungivores only in Trial II but not in Trial I. On the other hand, SHSOL enhanced bacterivores and fungivores only at Pi in Trial I. Weeds were suppressed by SH, SOL and SHSOL throughout the experiment. SHSOL suppressed R. reniformis and enhanced free-living nematodes better than SOL, and suppressed weeds better than SH.  相似文献   

8.
The effects of perennial peanut (Arachis glabrata) ground cover on the nematode community in a citrus orchard were examined. Samples were taken from two different ground cover treatments (perennial peanut or bare ground) at each of three distances from the tree trunk. Richness, measured as total numbers of nematode genera per sample, and total numbers of nematodes were greatest in the perennial peanut treatment (P < 0.05). Abundance of many genera of bacterivores, fungivores, and omnivores were increased by the perennial peanut ground cover. Total numbers of plant parasites were greater in perennial peanut treatments on three of the five sampling dates (P < 0.05), mainly due to trends in numbers of Mesocriconema. Distance from a tree trunk and the interaction of ground cover treatments and proximity to a tree trunk were most influential for Belonolaimus and Hoplolaimus. Although differences among treatments were observed for nematode genera and trophic groups, ecological indices were not consistently sensitive to treatments. Among several ecological indices evaluated, richness was most often affected by ground cover treatment.  相似文献   

9.
Biological control of nematodes: Soil amendments and microbial antagonists   总被引:3,自引:0,他引:3  
Summary Organic matter amendments to soil can be used to manage phytoparasitic nematodes. The most effective amendments are those with narrow C:N ratios and high protein or amine-type N content. For soil with 1.0% (w/w) organic matter amendment there is a direct relation between extent of nematode control and the N content of amendments. A special group of amendments are those containing chitinous materials. Chitin addition to soil results in stimulation of a select microflora capable of degrading the polymer. Several microbial species are known to destroy the eggs of phytonematodes (Meloidogyne spp). Organic matter can be modified by addition of specific compounds or by inoculation with particular microbial species to produce an amendment that will induce suppressiveness.  相似文献   

10.
Steam and soil solarization were investigated for control of the root-knot nematode Meloidogyne arenaria in 2 yr of field trials on a commercial flower farm in Florida. The objective was to determine if preplant steam treatments in combination with solarization, or solarization alone effectively controlled nematodes compared to methyl bromide (MeBr). Trials were conducted in a field with naturally occurring populations of M. arenaria. Treatments were solarization alone, steam treatment after solarization using standard 7.6-cm-diameter perforated plastic drain tile (steam 1), steam treatment following solarization using custom-drilled plastic drain tile with 1.6-mm holes spaced every 3.8 cm (steam 2), and MeBr applied at 392 kg/ha 80:20 MeBr:chloropicrin. Drain tiles were buried approximately 35 cm deep with four tiles per 1.8 by 30 m plot. Steam application followed a 4-wk solarization period concluding in mid-October. All steam was generated using a Sioux propane boiler system. Plots were steamed for sufficient time to reach the target temperature of 70°C for 20 min. Solarization plastic was retained on the plots during steaming and plots were covered with a single layer of carpet padding to provide additional insulation. The floriculture crops larkspur (Delphinium elatum and Delphinium × belladonna), snapdragon (Antirrhinum majus), and sunflower (Helianthus annuus) were produced according to standard commercial practices. One month after treatment in both years of the study, soil populations of M. arenaria were lower in both steam treatments and in MeBr compared to solarization alone. At the end of the season in both years, galling on larkspur, snapdragon, and sunflowers was lower in both steam treatments than in solarization. Both steam treatments also provided control of M. arenaria in soil at the end of the season comparable to, or exceeding that provided by MeBr. Both steam treatments also reduced M. arenaria in snapdragon roots comparable to, or exceeding control with MeBr. Meloidogyne arenaria in soil increased in solarization alone. Solarization alone also had higher gall ratings on larkspur, snapdragon, and sunflower than all other treatments. Steam provided excellent control of M. arenaria in this study.  相似文献   

11.
The effects of spray additives on entomopathogenic nematode persistence and efficacy against Plutella xylostella (L . ) were studied . Several adjuvants were toxic to radish seedlings ( Raphanus sativus var . capitata L . ) but none was toxic to the nematodes or P. xylostella. In the laboratory , the adjuvants that provided the best antidesiccant activity based on a rank score were TX7719 , Rodspray oil and Nufilm P . Those providing less protection but better than the remaining adjuvants were 38 - F , dextrose and Pluronic F - 127 . In greenhouse trials , TX7719 and Rodspray oil were more effective than the other adjuvants tested . The stilbene brightener , Blankophor BBH , did not increase nematode efficacy consistently in greenhouse trials probably because the concentration used was too low . In field trials , the combination of TX7719 plus Blankophor BBH increased nematode persistence on watercress leaves ( Nasturium officinale R . Br . ) and efficacy against P. xylostella significantly . In vitro- pro duced nematodes benefited more from additives than in vivo- produced nematodes in the laboratory , but that difference was lost in the field . Overall , it was found that additives generally improved nematode persistence and efficacy , but the improvement was probably not sufficient to increase the feasibility of foliar applications of nematodes against P. xylostella. However , further evaluation of adjuvants is warranted for applications of nematodes to watercress for the control of P. xylostella.  相似文献   

12.
The population density of Meloidogyne incognita was significantly reduced in land that was fallowed or cropped to crotalaria, marigold, bermudagrass, or bahiagrass. The rate of population decline caused by different cropping systems was influenced by initial population densities. Crotalaria, marigold, and bare fallow were about equally effective in reducing the density of M. incognita below dctectable lcvels, usually requiring 1-3 yr. Bahiagrass and bcrmudagrass required 4-5 yr or longer to reduce M. incognita below a detectable level. A high population density of Trichodorus christiei developed in land cropped 5 yr to bermudagrass, bahiagrass, okra, and marigold. Population densities of Pratylenchus brachyurus and Xiphinema americanum increased in land cropped to crotalaria or bermudagrass. Belonolabnus Iongicaudatus was detected only in land cropped to bermudagrass, The effectiveness of nematicides in reducing M. incognita infection was rclatcd to nematode population density resulting from 5 yr of different cropping systems. Treatment with aldicarb reduced M. incognita below detectable levels following all cropping systems; treatment with ethoprop following all cropping systems except okra, treatment wflh ethylene dibromide following bahiagrass or fallow; and treatment with DBCP only after 5 yr of fallow. Tomato transplant growth was affected .by both cropping systems and nematicide treatment. Transplants grown after crotalaria and bahiagrass were significantly larger than those grown after other crops. Also, treatment with aldicarb and ethoprop significantly increased transplant size.  相似文献   

13.
Ozone gas (O(3)) is a reactive oxidizing agent with biocidal properties. Because of the current phasing out of methyl bromide, investigations on the use of ozone gas as a soil-fumigant were conducted. Ozone gas was produced at a concentration of 1% in air by a conventional electrical discharge O(3) generator. Two O(3) dosages and three gas flow rates were tested on a sandy loam soil collected from a tomato field that had a resident population of root knot nematodes, Meloidogyne javanica. At dosages equivalent to 50 and 250 kg of O(3)/ha, M. javanica were reduced by 24% and 68%, and free-living nematodes by 19% and 52%, respectively. The reduction for both M. javanica and free-living nematodes was dosage dependent and flow rate independent. The rates of O(3) mass transfer (OMT) through three soils of different texture were greater at low and high moisture levels than at intermediate ones. At any one soil moisture level, the OMT rate varied with soil texture and soil organic matter content. Results suggest that soil texture, moisture, and organic matter content should be considered in determining O(3) dosage needed for effective nematode control.  相似文献   

14.
The influence of various cropping sequences on population densities of Meloidogyne hapla and carrot yield was studied in organic soil under microplot-and field conditions. Spinach, radish, barley, oat, and wheat were poor or nonhosts for M. hapla. Population densities of M. hapla were maintained or increased on cabbage, celery, lettuce, leek, marigold, and potato. Marketable percent-age and root weight of carrots were greater following spinach, oat, radish, and fallow-onion than those following two crops of onion or carrot in microplots. Under field conditions, the carrot-onion-oat-carrot cropping sequence decreased M. hapla population densities and provided a 282% increase in marketable yield of carrot compared to a carrot monoculture. Two consecutive years of onion increased M. hapla population densities causing severe root galling and a 50% yield loss in the following crop of carrot. Based on root-gall indices, carrots could be grown economically for 2 years following radish, spinach, and oat, but not following onion and carrot without the use of nematicides.  相似文献   

15.
The effects of the application of poultry litter at 0.0, 6.7, 13.4, and 20.1 tons/ha on population changes during the growing season on nematode communities were evaluated in two cotton production fields in North Carolina. Numbers of bactivorous nematodes increased at midseason in response to the rate at which litter was applied but decreased with increasing litter application rates at cotton harvest. Numbers of fungivores at cotton harvest were related positively to the rate of litter applied, and this affected a positive increase in the fungivore-to-bacterivore ratio at this sampling date. The rate at which poultry litter was applied resulted in an increase in the bacterivore to plant-parasite ratio, and this corresponded with increased cotton lint yield. Trophic diversity was increased by litter application rate at cotton harvest at one location but not at another. The plant-parasite maturity index was greater consistently at one site than at a second site where the Hoplolaimus columbus population density was above the damage threshold for cotton. The population density of H. columbus was suppressed with increasing rates of poultry litter application, but other plant-parasitic nematodes were affected marginally.  相似文献   

16.
重茬种植西洋参对其根区土壤微生物与土壤理化性质影响   总被引:6,自引:0,他引:6  
以北京产区西洋参根际土为研究对象,通过对不同重萑年限西洋参根际土与对照新土进行比较,研究重茬对西洋参根际土壤微生物及其土壤理化特性的影响。结果显示:西洋参种植第1a微生物及土壤各项理化性质指标与对照相比都戍较低水平,随着重茬年限的增加土壤理化性质与微生物都变化较大,其中重萑2a土的全钾含量较高,为对照新土的1.38倍。重茬3a土的细菌、真菌均达到高峰,分别为对照的11.26、5.94倍。放线菌含量在重茬4a土中达到高峰为对照的8.41倍。  相似文献   

17.
Effects of Continuous Cropping of Rye on Soil Biota and Biochemistry   总被引:1,自引:0,他引:1  
Long-term studies on the ecological effects of continuous rye cultivations carried out in Poland are summarized. It was shown that in continuous cropping of rye, despite the decrease of crop yields, no significant difference was observed in annual primary production rates compared with estimates found for rye fields cultivated in diversified crop rotation patterns. In continuous cultivation of rye fauna impoverishment was observed, while at the same time the number of crop pests increased. The animal groups reduced by continuous cropping of rye belong to Protozoa, Lumbricidae, Acarina, and winged insects. The cultivation of rye in continuous cropping influenced the increase of fungi with bacteria and actinomycetes becoming less abundant. In soils under continuous rye the average concentration of phenolic acids was 400% higher than under rye in diversified rotation. Five different phenolic acids were identified. The mean content of bound amino acids in soils under diversified rotation was 417?mg×kg?1and in soils under continuous rye cropping was 371?mg×kg?1. The energetic cost of total soil animal community maintenance calculated per unit of biomass under continuous cropping of rye was almost twice as high as under the diversified rotation. The accumulation of toxic metabolites caused negative effects among biota under continuous cropping of rye.  相似文献   

18.
Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P ≤ 0.05), but no treatment differences were observed in year 2. Wheat was a good host to Paratrichodorus minor, whereas vetch was a poor host, but numbers of P. minor were not lower in vetch-planted plots after corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor × S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P ≤ 0.05) but not by the winter cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.  相似文献   

19.
20.
Pot trials were carried out under controlled conditions to evaluate the effectiveness against Fusarium wilt of rocket (Fusarium oxysporum f.sp. conglutinans) and basil (Foxysporum f.sp. basilici) of soil amendments based on a patented formulation of Brassica carinata defatted seed meal and compost, combined or not with a simulation of soil solarization. The soil solarization treatment was carried out in a growth chamber by heating the soil for 7 and 14 days at optimal (55–52°C for 6 h, 50–48°C for 8 h and 47–45°C for 10 h/day) and sub‐optimal (50–48°C for 6 h, 45–43°C for 8 h and 40–38°C for 10 h/day) temperatures similar to those observed in summer in solarized soil in greenhouses in Northern Italy. Two subsequent cycles of plant cultivation were carried out in the same soil. Even at sub‐optimal temperature regimes, 7 days of thermal treatment provided very valuable results in terms of disease control on both rocket and basil. In general, the thermal treatment was more effective against F. oxysporum f.sp. basilici than against Foxysporum f.sp. conglutinans. Control of Fusarium wilt of rocket is improved with 14 days of thermal treatment. The combination of organic amendments with a short period of soil solarization (7 or 14 days), although not providing any improvement to the level of disease management, did significantly increase biomass and positively affected yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号