首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two closely related fresh water cyanobacteria Synechococcus elongatus PCC 6301 and Synechococcus elongatus PCC 7942 have previously been shown to constitutively express a FAD-containing L-amino acid oxidase with high specificity for basic L-amino acids (L-arginine being the best substrate). In this paper we show that such an enzyme is also present in the fresh water cyanobacterium Synechococcus cedrorum PCC 6908. In addition, an improved evaluation of the nucleotide/amino acid sequence of the L-amino acid oxidase of Synechococcus elongatus PCC 6301 (encoded by the aoxA gene) with respect to the FAD-binding site and a translocation pathway signal sequence will be given. Moreover, the genome sequences of 24 cyanobacteria will be evaluated for the occurrence of an aoxA-similar gene. In the evaluated cyanobacteria 15 genes encoding an L-amino acid oxidase-similar protein will be found.  相似文献   

2.
The cyanobacteria Synechococcus sp. strain PCC 7942 and Synechococcus sp. strain PCC 6301 are very closely related and both have been designated by the binomial Anacystis nidulans. The only established difference between the two strains is the superior transformation properties of strain PCC 7942. Significant homology between the rRNA genes of these strains was demonstrated by the ability of an rRNA operon from strain PCC 6301, interrupted by a spectinomycin and streptomycin resistance marker, to transform strain PCC 7942 by recombining with and replacing an endogenous rRNA operon. Restriction fragment length polymorphism data indicated that the chromosomes of the two strains were conserved around the three psbA loci, the two rRNA operons, and the psbDI locus. However, multiple polymorphisms were detected downstream of the psbDII locus, identifying a DNA rearrangement such as an inversion, insertion, or deletion within the chromosome. Analysis of genome structure by pulsed-field gel electrophoresis of large NotI restriction fragments showed only two bands that were visibly shifted between the chromosomes of the two strains. These data support their very close genetic relationship and the feasibility of studying genes derived from strain PCC 6301 in the highly transformable PCC 7942 strain.  相似文献   

3.
4.
The products of the NpR1527 and NpR1526 genes of the filamentous, diazotrophic, fresh-water cyanobacterium Nostoc punctiforme strain ATCC 29133 were identified as a nitrate transporter (NRT) and nitrate reductase (NR) respectively, by complementation of nitrate assimilation mutants of the cyanobacterium Synechococcus elongatus strain PCC 7942. While other fresh-water cyanobacteria, including S. elongatus, have an ATP-binding cassette (ABC)-type NRT, the NRT of N. punctiforme belongs to the major facilitator superfamily, being orthologous to the one found in marine cyanobacteria (NrtP). Unlike the ABC-type NRT, which transports both nitrate and nitrite with high affinity, Nostoc NrtP transported nitrate preferentially over nitrite. NrtP was distinct from ABC-type NRT also in its insensitivity to ammonium-promoted regulation at the post-translational level. The nitrate reductase of N. punctiforme was, on the other hand, inhibited upon addition of ammonium to medium, lending ammonium sensitivity to nitrate assimilation.  相似文献   

5.
Summary For biocontrol of mosquitoes, mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus have been cloned into a number of cyanobacteria. However, little is known about the persistence of such recombinant cyanobacteria in mosquito larval habitats. Four fresh water unicellular cyanobacteria, Synechococcus PCC6301, PCC7425, PCC7942 and Synechocystis PCC 6803, were evaluated under laboratory conditions related to mosquito breeding environments. Results indicated that Synechococcus PCC6301 was potentially the most suitable organism for use in the natural mosquito habitat as it could tolerate a wide range of temperatures, salinities, and biological and chemical insecticides. Moreover, strain PCC6301 could be ingested and digested by Culex quinquefasciatus larvae and could support the development of larvae to full insect maturity.  相似文献   

6.
The nucleotide sequence of the entire genome of a filamentous cyanobacterium, Anabaena sp. strain PCC 7120, was determined. The genome of Anabaena consisted of a single chromosome (6,413,771 bp) and six plasmids, designated pCC7120alpha (408,101 bp), pCC7120beta (186,614 bp), pCC7120gamma (101,965 bp), pCC7120delta (55,414 bp), pCC7120epsilon (40,340 bp), and pCC7120zeta (5,584 bp). The chromosome bears 5368 potential protein-encoding genes, four sets of rRNA genes, 48 tRNA genes representing 42 tRNA species, and 4 genes for small structural RNAs. The predicted products of 45% of the potential protein-encoding genes showed sequence similarity to known and predicted proteins of known function, and 27% to translated products of hypothetical genes. The remaining 28% lacked significant similarity to genes for known and predicted proteins in the public DNA databases. More than 60 genes involved in various processes of heterocyst formation and nitrogen fixation were assigned to the chromosome based on their similarity to the reported genes. One hundred and ninety-five genes coding for components of two-component signal transduction systems, nearly 2.5 times as many as those in Synechocystis sp. PCC 6803, were identified on the chromosome. Only 37% of the Anabaena genes showed significant sequence similarity to those of Synechocystis, indicating a high degree of divergence of the gene information between the two cyanobacterial strains.  相似文献   

7.
ABSTRACT

While the model bacteria Escherichia coli and Bacillus subtilis harbor single chromosomes, which is known as monoploidy, some freshwater cyanobacteria contain multiple chromosome copies per cell throughout their cell cycle, which is known as polyploidy. In the model cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803, chromosome copy number (ploidy) is regulated in response to growth phase and environmental factors. In S. elongatus 7942, chromosome replication is asynchronous both among cells and chromosomes. Comparative analysis of S. elongatus 7942 and S. sp. 6803 revealed a variety of DNA replication mechanisms. In this review, the current knowledge of ploidy and DNA replication mechanisms in cyanobacteria is summarized together with information on the features common with plant chloroplasts. It is worth noting that the occurrence of polyploidy and its regulation are correlated with certain cyanobacterial lifestyles and are shared between some cyanobacteria and chloroplasts.  相似文献   

8.
Owing to their photosynthetic capabilities, there is increasing interest in utilizing cyanobacteria to convert solar energy into biomass. 2-Deoxy-scyllo-inosose (DOI) is a valuable starting material for the benzene-free synthesis of catechol and other benzenoids. DOI synthase (DOIS) is responsible for the formation of DOI from d-glucose-6-phosphate (G6P) in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics such as neomycin and butirosin. DOI fermentation using a recombinant Escherichia coli strain has been reported, although a carbon source is necessary for high-yield DOI production. We constructed DOI-producing cyanobacteria toward carbon-free and sustainable DOI production. A DOIS gene derived from the butirosin producer strain Bacillus circulans (btrC) was introduced and expressed in the cyanobacterium Synechococcus elongatus PCC 7942. We ultimately succeeded in producing 400 mg/L of DOI in S. elongatus without using a carbon source. DOI production by cyanobacteria represents a novel and efficient approach for producing benzenoids from G6P synthesized by photosynthesis.  相似文献   

9.
Cyanobacteria are photosynthetic prokaryotes of high ecological and biotechnological relevance that have been cultivated in laboratories around the world for more than 70 years. Prolonged laboratory culturing has led to multiple microevolutionary events and the appearance of a large number of ‘domesticated’ substrains among model cyanobacteria. Despite its widespread occurrence, strain domestication is still largely ignored. In this work we describe Synechococcus elongatus PCC 7942-KU, a novel domesticated substrain of the model cyanobacterium S. elongatus PCC 7942, which presents a fast-sedimenting phenotype. Under higher ionic strengths the sedimentation rate increased leading to complete sedimentation in just 12 h. Through whole genome sequencing and gene deletion, we demonstrated that the Group 3 alternative sigma factor F plays a key role in cell sedimentation. Further analysis showed that significant changes in cell surface structures and a three-fold increase in released polysaccharides lead to the appearance of a fast-sedimenting phenotype. This work sheds light on the determinants of the planktonic to benthic transitions and provides genetic targets to generate fast-sedimenting strains that could unlock cost-effective cyanobacterial harvesting at scale.  相似文献   

10.
Iron-deficiency-induced protein A (IdiA) with a calculated molecular mass of 35 kDa has previously been shown to be essential under manganese- and iron-limiting conditions in the cyanobacteria Synechococcus PCC 6301 and PCC 7942. Studies of mutants indicated that in the absence of IdiA mainly photosystem II becomes damaged, suggesting that the major function of IdiA is in Mn and not Fe metabolism (Michel et al. 1996, Microbiology 142: 2635–2645). To further elucidate the function of IdiA, the immunocytochemical localization of IdiA in the cell was examined. These investigations provided evidence that under mild Fe deficiency IdiA is intracellularly localized and is mainly associated with the thylakoid membrane in Synechococcus PCC 6301. The protein became distributed throughout the cell under severe Fe limitation when substantial morphological changes had already occurred. For additional verification of a preferential thylakoid membrane association of IdiA, these investigations were extended to the thermophilic Synechococcus elongatus. In this cyanobacterium Mn deficiency could be obtained more rapidly than in the mesophilic Synechococcus PCC 6301 and PCC 7942, and the thylakoid membrane structure proved to be more stable under limiting growth conditions. The immunocytochemical investigations with this cyanobacterium clearly supported a thylakoid membrane association of IdiA. In addition, evidence was obtained for a localization of IdiA on the cytoplasmic side of the thylakoid membrane. All available data support a function of IdiA as an Mn-binding protein that facilitates transport of Mn via the thylakoid membrane into the lumen to provide photosystem II with Mn. A possible explanation for the observation that IdiA was not only expressed under Mn deficiency but also under Fe deficiency is given in the discussion. Received: 28 July 1997 / Accepted: 26 November 1997  相似文献   

11.
We describe a novel mechanism of site-specific recombination in the unicellular marine cyanobacterium Synechococcus sp. PCC7002. The specific recombination sites on the smallest plasmid pAQ1 were localized by studying the properties of pAQ1-derived shuttle-vectors. We found that a palindromic element, the core sequence of which is G(G/A)CGATCGCC, functions as a resolution site for site-specific plasmid recombination. Furthermore, site-directed mutagenesis analysis of the element show that the site-specific recombination in the cyanobacterium requires sequence specificity, symmetry in the core sequence and, in part, the spacing between the elements. Interestingly, this element is over-represented not only in pAQ1 and in the genome of the cyanobacterium, but also in the accumulated cyanobacterial sequences from Synechococcus sp. PCC6301, PCC7942, vulcanus and Synechocystis sp. PCC6803 within GenBank and EMBL databases. Thus, these findings strongly suggest that the site-specific recombination mechanism based on the palindromic element should be common in these cyanobacteria.  相似文献   

12.
Synechococcus elongatus PCC 7942 was the first cyanobacterialstrain to be reliably transformed by exogenously added DNA andhas become the model organism for cyanobacterial circadian rhythms.With a small genome (2.7 Mb) and well-developed genetic tools,PCC 7942 provides an exceptional opportunity to elucidate thecircadian mechanism through genetics. We describe a projectto create mutations in every locus of the genome, both to assayeach locus for its potential contribution to the circadian clockand to archive data for the cyanobacterial community. Cosmidclones that carry inserts of PCC 7942 DNA are saturated withtransposon insertions in vitro to provide sequencing templatesand substrates for mutagenesis of the PCC 7942 genome via homologousrecombination. We have mutagenized 53% of the chromosome from50 chromosome-bearing cosmids and identified the positions ofinsertions in 31 of those cosmids and the 46 kb plasmid, pANL.PCC 7942 mutants defective for 490 different genes have beenscreened for circadian phenotypes. Mutagenesis of three apparentlyessential loci, including clpPIIclpX, resulted in circadianphenotypes. We developed an effective antisense suppressionmethod to further the analysis of essential genes. When completed,the set of comprehensive mutations will provide the communitywith a unique resource whose impact will extend beyond circadianresearch.  相似文献   

13.
Role of Predatory Bacteria in the Termination of a Cyanobacterial Bloom   总被引:10,自引:0,他引:10  
Changes in cyanobacterial abundance and in the occurrence of bacteria of bacteria capable of lysing cyanobacteria were monitored over a period of 6 months (May to October 1998) in eutrophic Brome Lake (Quebec, Canada), in which dense cyanobacterial blooms recur regularly. By screening lake water, we isolated two strains of lytic bacteria, from the family Cytophagaceae. When tested on 12 cyanobacteria and 6 heterotrophic bacteria, strain 1 lysed only Anabaena flos-aquae and strain 2 lysed only Synechococcus cedorum, Synechococcus leopoliensis, Synechococcus elongatus, and Anacystic nidulans: both liquid and agar-grown cultures of these cyanobacteria were lysed. The number of plaque forming units of bacteria increased dramatically during the decline of the bloom. The results are consistent with an important role for these host-specific lytic bacteria in control and elimination of cyanobacterial blooms in this lake.  相似文献   

14.
With multiple applications in food, pharmaceutical, and chemical industries as antioxidant or nonmetabolizable sweetener; the bioproduction of d -mannitol is gaining global attention, especially with photosynthetic organisms as hosts. Considering the sustainability prospects, the current work encompasses metabolic engineering of a widely used cyanobacterial strain, Synechococcus elongatus PCC 7942, and two newly isolated fast-growing cyanobacterial strains; S. elongatus PCC 11801 and S. elongatus PCC 11802, for mannitol production. We engineered these strains with a two-step pathway by cloning genes for mannitol-1-phosphate dehydrogenase (mtlD) and mannitol-1-phosphatase (mlp), where the mtlD expression was under the control of different promoters from PCC 7942, namely, Prbc225, PcpcB300, PcpcBm1, PrbcLm17, and PrbcLm15. The strains were tested under the “switch conditions,” where the growth conditions were switched after the first 3 days, thereby resulting in differential promoter activity. Among the engineered strains of PCC 11801 and PCC 11802, the strains possessing Prbc225-mtlD module produced relatively high mannitol titers of 401 ± 18 mg/L and 537 ± 18 mg/L, respectively. The highest mannitol titer of 701 ± 15 mg/L (productivity 60 mg/L.d, yield 895 µM/OD730) was exhibited by the engineered strain of PCC 7942 expressing PcpcB300-mtlD module. It is by far the highest obtained mannitol yield from the engineered cyanobacteria.  相似文献   

15.
16.
17.
Synechococcus elongatus strain PCC 7942 strictly depends upon the generation of photosynthetically derived energy for growth and is incapable of biomass increase in the absence of light energy. Obligate phototrophs'' core metabolism is very similar to that of heterotrophic counterparts exhibiting diverse trophic behavior. Most characterized cyanobacterial species are obligate photoautotrophs under examined conditions. Here we determine that sugar transporter systems are the necessary genetic factors in order for a model cyanobacterium, Synechococcus elongatus PCC 7942, to grow continuously under diurnal (light/dark) conditions using saccharides such as glucose, xylose, and sucrose. While the universal causes of obligate photoautotrophy may be diverse, installing sugar transporters provides new insight into the mode of obligate photoautotrophy for cyanobacteria. Moreover, cyanobacterial chemical production has gained increased attention. However, this obligate phototroph is incapable of product formation in the absence of light. Thus, converting an obligate photoautotroph to a heterotroph is desirable for more efficient, economical, and controllable production systems.  相似文献   

18.
A collection of 17 salt-sensitive mutants of the cyanobacterium Synechocystis sp. strain PCC 6803 was obtained by random cartridge mutagenesis. The genes coding for proteins essential for growth at high salt concentrations were mapped on the completely known genome sequence of this strain. The two genes coding for enzymes involved in biosynthesis of the osmolyte glucosylglycerol were affected in nine mutants. Two mutants defective in a glycoprotease encoding gene gcp showed a reduced salt resistance. Four genes were identified not previously known to be essential for salt tolerance in cyanobacteria. These genes (slr1799, slr1087, sll1061, and sll1062) code for proteins not yet functionally characterized. Received: 21 May 2001 / Accepted: 27 June 2001  相似文献   

19.
The complete nucleotide sequence of the genome of a symbiotic bacterium Mesorhizobium loti strain MAFF303099 was determined. The genome of M. loti consisted of a single chromosome (7,036,071 bp) and two plasmids, designated as pMLa (351,911 bp) and pMLb (208, 315 bp). The chromosome comprises 6752 potential protein-coding genes, two sets of rRNA genes and 50 tRNA genes representing 47 tRNA species. Fifty-four percent of the potential protein genes showed sequence similarity to genes of known function, 21% to hypothetical genes, and the remaining 25% had no apparent similarity to reported genes. A 611-kb DNA segment, a highly probable candidate of a symbiotic island, was identified, and 30 genes for nitrogen fixation and 24 genes for nodulation were assigned in this region. Codon usage analysis suggested that the symbiotic island as well as the plasmids originated and were transmitted from other genetic systems. The genomes of two plasmids, pMLa and pMLb, contained 320 and 209 potential protein-coding genes, respectively, for a variety of biological functions. These include genes for the ABC-transporter system, phosphate assimilation, two-component system, DNA replication and conjugation, but only one gene for nodulation was identified.  相似文献   

20.
We determined the complete nucleotide sequence of the mitochondrial genome (except for a portion of the putative control region) for a deep-sea fish, Gonostoma gracile. The entire mitochondrial genome was purified by gene amplification using long polymerase chain reaction (long PCR), and the products were subsequently used as templates for PCR with 30 sets of newly designed, fish-universal primers that amplify contiguous, overlapping segments of the entire genome. Direct sequencing of the PCR products showed that the genome contained the same 37 mitochondrial structural genes as found in other vertebrates (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes), with the order of all rRNA and protein-coding genes, and 19 tRNA genes being identical to that in typical vertebrates. The gene order of the three tRNAs (tRNAGlu, tRNAThr, and tRNAPro) relative to cytochrome b, however, differed from that determined in other vertebrates. Two steps of tandem duplication of gene regions, each followed by deletions of genes, can be invoked as mechanisms generating such rearrangements of tRNAs. This is the first example of tRNA gene rearrangements in a bony fish mitochondrial genome. Received August 5, 1998; accepted February 19, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号