首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed various types of complex calcium oscillations. The oscillations are explained with a model based on calcium-induced calcium release (CICR). In addition to the endoplasmic reticulum as the main intracellular Ca2+ store, mitochondrial and cytosolic Ca2+ binding proteins are also taken into account. This model was previously proposed for the study of the physiological role of mitochondria and the cytosolic proteins in gene rating complex Ca2+ oscillations [1]. Here, we investigated the occurrence of different types of Ca2+ oscillations obtained by the model, i.e. simple oscillations, bursting, and chaos. In a bifurcation diagram, we have shown that all these various modes of oscillatory behavior are obtained by a change of only one model parameter, which corresponds to the physiological variability of an agonist. Bursting oscillations were studied in more detail because they express birhythmicity, trirhythmicity and chaotic behavior. Two different routes to chaos are observed in the model: in addition to the usual period doubling cascade, we also show intermittency. For the characterization of the chaotic behavior, we made use of return maps and Lyapunov exponents. The potential biological role of chaos in intracellular signaling is discussed.  相似文献   

2.
We have investigated the detailed regulation of neuronal firing pattern by the cytosolic calcium buffering capacity using a combination of mathematical modeling and patch-clamp recording in acute slice. Theoretical results show that a high calcium buffer concentration alters the characteristic regular firing of cerebellar granule cells and that a transition to various modes of oscillations occurs, including bursting. Using bifurcation analysis, we show that this transition from spiking to bursting is a consequence of the major slowdown of calcium dynamics. Patch-clamp recordings on cerebellar granule cells loaded with a high concentration of the fast calcium buffer BAPTA (15 mM) reveal dramatic alterations in their excitability as compared to cells loaded with 0.15 mM BAPTA. In high calcium buffering conditions, granule cells exhibit all bursting behaviors predicted by the model whereas bursting is never observed in low buffering. These results suggest that cytosolic calcium buffering capacity can tightly modulate neuronal firing patterns leading to generation of complex patterns and therefore that calcium-binding proteins may play a critical role in the non-synaptic plasticity and information processing in the central nervous system.  相似文献   

3.
Association between the ER and mitochondria has long been observed, and the formation of close contacts between ER and mitochondria is necessary for the ER-mediated sequestration of cytosolic calcium by mitochondria. Autocrine motility factor receptor (AMF-R) is a marker for a smooth subdomain of the ER, shown here by confocal microscopy to be distinct from, yet closely associated with the calnexin- or calreticulin-labeled ER. By EM, smooth ER AMF-R tubules exhibit direct interactions with mitochondria, identifying them as a mitochondria-associated smooth ER subdomain. In digitonin-permeabilized MDCK cells, the addition of rat liver cytosol stimulates the dissociation of smooth ER and mitochondria under conditions of low calcium. Using BAPTA chelators of various affinities and CaEGTA buffers of defined free Ca(2+) concentrations and quantitative confocal microscopy, we show that free calcium concentrations <100 nM favor dissociation, whereas those >1 microM favor close association between these two organelles. Therefore, we describe a cellular mechanism that facilitates the close association of this smooth ER subdomain and mitochondria when cytosolic free calcium rises above physiological levels.  相似文献   

4.
M S Jafri  S Vajda  P Pasik    B Gillo 《Biophysical journal》1992,63(1):235-246
Cytosolic calcium oscillations occur in a wide variety of cells and are involved in different cellular functions. We describe these calcium oscillations by a mathematical model based on the putative electrophysiological properties of the endoplasmic reticulum (ER) membrane. The salient features of our membrane model are calcium-dependent calcium channels and calcium pumps in the ER membrane, constant entry of calcium into the cytosol, calcium dependent removal from the cytosol, and buffering by cytoplasmic calcium binding proteins. Numerical integration of the model allows us to study the fluctuations in the cytosolic calcium concentration, the ER membrane potential, and the concentration of free calcium binding sites on a calcium binding protein. The model demonstrates the physiological features necessary for calcium oscillations and suggests that the level of calcium flux into the cytosol controls the frequency and amplitude of oscillations. The model also suggests that the level of buffering affects the frequency and amplitude of the oscillations. The model is supported by experiments indirectly measuring cytosolic calcium by calcium-induced chloride currents in Xenopus oocytes as well as cytosolic calcium oscillations observed in other preparations.  相似文献   

5.
Theoretical models of intracellular calcium oscillations have hitherto focused on the endoplasmic reticulum (ER) as an internal calcium store. These models reproduced the large variability in oscillation frequency observed experimentally. In the present contribution, we extend our earlier model [Marhl et al., Biophys. Chem., 63 (1997) 221] by including, in addition to the ER, mitochondria as calcium stores. Simple plausible rate laws are used for the calcium uptake into, and release from, the mitochondria. It is demonstrated with the help of this extended model that mitochondria are likely to act in favour of frequency encoding by enabling the maintenance of fairly constant amplitudes over wide ranges of frequency.  相似文献   

6.
Theoretical models of intracellular calcium oscillations have hitherto focused on the endoplasmic reticulum (ER) as an internal calcium store. These models reproduced the large variability in oscillation frequency observed experimentally. In the present contribution, we extend our earlier model [Marhl et al., Biophys. Chem., 63 (1997) 221] by including, in addition to the ER, mitochondria as calcium stores. Simple plausible rate laws are used for the calcium uptake into, and release from, the mitochondria. It is demonstrated with the help of this extended model that mitochondria are likely to act in favour of frequency encoding by enabling the maintenance of fairly constant amplitudes over wide ranges of frequency.  相似文献   

7.
A refined electrochemical model accounting for intracellular calcium oscillations and their interrelations with oscillations of the potential difference across the membrane of the endoplasmic reticulum (ER) or other intracellular calcium stores is established. The ATP dependent uptake of Ca2+ from the cytosol into the ER, the Ca2+ release from the ER through channels following a calcium-induced calcium release mechanism, and a potential-dependent Ca2+ leak flux out of the ER are included in the model and described by plausible rate laws. The binding of calcium to specific proteins such as calmodulin is taken into account. The quasi-electroneutrality condition allows us to express the transmembrane potential in terms of the concentrations of cytosolic calcium and free binding sites on proteins, which are the two independent variables of the model. We include monovalent ions in the model, because they make up a considerable portion in the balance of electroneutrality. As the permeability of the endoplasmic membrane for these ions is much higher than that for calcium ions, we assume the former to be in Nernst equilibrium. A stability analysis of the steady-state solutions (which are unique or multiple depending on parameter values) is carried out and the Hopf bifurcation leading from stable steady states to self-sustained oscillations is analysed with the help of appropriate mathematical techniques. The oscillations obtained by numerical integration exhibit the typical spike-like shape found in experiments and reasonable values of frequency and amplitude. The model describes the process of switching between stationary and pulsatile regimes as well as changes in oscillation frequency upon parameter changes. It turns out that calcium oscillations can arise without a permanent influx of calcium into the cell, when a calcium-buffering system such as calmodulin is included.  相似文献   

8.
We present a simple model for calcium oscillations in the pancreatic acinar cells. This model is based on the calcium release from two receptors, inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) through the process of calcium induced calcium release (CICR). In pancreatic acinar cells, when the Ca2+ concentration increases, the mitochondria uptake it very fast to restrict Ca2+ response in the cell. Afterwards, a much slower release of Ca2+ from the mitochondria serves as a calcium supply in the cytosol which causes calcium oscillations. In this paper we discuss a possible mechanism for calcium oscillations based on the interplay among the three calcium stores in the cell: the endoplasmic reticulum (ER), mitochondria and cytosol. Our model predicts that calcium shuttling between ER and mitochondria is a pacemaker role in the generation of Ca2+oscillations. We also consider the calcium dependent production and degradation of (1,4,5) inositol-trisphosphate (IP3), which is a key source of intracellular calcium oscillations in pancreatic acinar cells. In this study we are able to predict the different patterns of calcium oscillations in the cell from sinusoidal to raised-baseline, high frequency and low-frequency baseline spiking.  相似文献   

9.
In a mathematical model for simple calcium oscillations [Biophys. Chem. 71 (1998) 125], it has been shown that mitochondria play an important role in the maintenance of constant amplitudes of cytosolic Ca(2+) oscillations. Simple plausible rate laws for Ca(2+) fluxes across the inner mitochondrial membrane have been used in this model. Here we show that it is possible to use the same rate laws as a plug-in element in other existing mathematical models and obtain the same effect on amplitude regulation. This result appears to be universal, independent of the type of model and the type of Ca(2+) oscillations. We demonstrate this on two models for spiking Ca(2+) oscillations [J. Biol. Chem. 266 (1991) 11068; Cell Calcium 14 (1993) 311] and on two recent models for bursting Ca(2+) oscillations; one of them being a receptor-operated model [Biophys. J. 79 (2000) 1188] and the other one being a store-operated model [BioSystems 57 (2000) 75].  相似文献   

10.
11.
12.
Zhu CL  Jia Y  Liu Q  Yang LJ  Zhan X 《Biophysical chemistry》2007,125(1):201-212
Based on a model of intracellular calcium (Ca(2+)) oscillation with self-modulation of inositol 1,4,5-trisphosphate signal, the mesoscopic stochastic differential equations for the intracellular Ca(2+) oscillations are theoretically derived by using the chemical Langevin equation method. The effects of the finite biochemical reaction molecule number on both simple and complex cytosolic Ca(2+) oscillations are numerically studied. In the case of simple intracellular Ca(2+) oscillation, it is found that, with the increase of molecule number, the coherence resonance or autonomous resonance phenomena can occur for some external stimulation parameter values. In the cases of complex cytosolic Ca(2+) oscillations, each extremum of concentration of cytosolic Ca(2+) oscillations corresponds to a peak in the histogram of Ca(2+) concentration, and the most probability appeared during the bursting plateau level for bursting, but at the largest minimum of Ca(2+) concentration for chaos. For quasi-periodicity, however, there are only two peaks in the histogram of Ca(2+) concentration, and the most probability is located at low concentration state.  相似文献   

13.
Mitochondria receive phosphatidylserine (PS) from the endoplasmic reticulum (ER), but how PS is moved from the ER to mitochondria is unclear. Current models postulate a physical link between the organelles, but no involvement of cytosolic proteins. Here, we have reconstituted PS transport from the ER to mitochondria in vitro using Xenopus egg components. Transport is independent of ER proteins, but is dependent on a cytosolic factor that has a preferential affinity for PS. Crosslinking with a photoactivatable PS analog identified VAT‐1 as a candidate for a cytosolic PS transport protein. Recombinant, purified VAT‐1 stimulated PS transport into mitochondria and depletion of VAT‐1 from Xenopus cytosol with specific antibodies led to a reduction of transport. Our results suggest that cytosolic factors have a role in PS transport from the ER to mitochondria, implicate VAT‐1 in the transport process, and indicate that physical contact between the organelles is not essential.   相似文献   

14.
15.
This review provides a comparative overview of recent developments in the modelling of cellular calcium oscillations. A large variety of mathematical models have been developed for this wide-spread phenomenon in intra- and intercellular signalling. From these, a general model is extracted that involves six types of concentration variables: inositol 1,4,5-trisphosphate (IP3), cytoplasmic, endoplasmic reticulum and mitochondrial calcium, the occupied binding sites of calcium buffers, and the fraction of active IP3 receptor calcium release channels. Using this framework, the models of calcium oscillations can be classified into 'minimal' models containing two variables and 'extended' models of three and more variables. Three types of minimal models are identified that are all based on calcium-induced calcium release (CICR), but differ with respect to the mechanisms limiting CICR. Extended models include IP3--calcium cross-coupling, calcium sequestration by mitochondria, the detailed gating kinetics of the IP3 receptor, and the dynamics of G-protein activation. In addition to generating regular oscillations, such models can describe bursting and chaotic calcium dynamics. The earlier hypothesis that information in calcium oscillations is encoded mainly by their frequency is nowadays modified in that some effect is attributed to amplitude encoding or temporal encoding. This point is discussed with reference to the analysis of the local and global bifurcations by which calcium oscillations can arise. Moreover, the question of how calcium binding proteins can sense and transform oscillatory signals is addressed. Recently, potential mechanisms leading to the coordination of oscillations in coupled cells have been investigated by mathematical modelling. For this, the general modelling framework is extended to include cytoplasmic and gap-junctional diffusion of IP3 and calcium, and specific models are compared. Various suggestions concerning the physiological significance of oscillatory behaviour in intra- and intercellular signalling are discussed. The article is concluded with a discussion of obstacles and prospects.  相似文献   

16.
One mechanism by which communication between the endoplasmic reticulum (ER) and mitochondria is achieved is by close juxtaposition between these organelles via mitochondria-associated membranes (MAM). The MAM consist of a region of the ER that is enriched in several lipid biosynthetic enzyme activities and becomes reversibly tethered to mitochondria. Specific proteins are localized, sometimes transiently, in the MAM. Several of these proteins have been implicated in tethering the MAM to mitochondria. In mammalian cells, formation of these contact sites between MAM and mitochondria appears to be required for key cellular events including the transport of calcium from the ER to mitochondria, the import of phosphatidylserine into mitochondria from the ER for decarboxylation to phosphatidylethanolamine, the formation of autophagosomes, regulation of the morphology, dynamics and functions of mitochondria, and cell survival. This review focuses on the functions proposed for MAM in mediating these events in mammalian cells. In light of the apparent involvement of MAM in multiple fundamental cellular processes, recent studies indicate that impaired contact between MAM and mitochondria might underlie the pathology of several human neurodegenerative diseases, including Alzheimer's disease. Moreover, MAM has been implicated in modulating glucose homeostasis and insulin resistance, as well as in some viral infections.  相似文献   

17.
Calcium in ionic form is a second messenger connecting several input signals to several target processes in the cell. The question arises how one second messenger can transmit more than one signal simultaneously (bow-tie structure of signalling). Experimental data on calcium dynamics often show patterns of successive low-peak and high-peak oscillatory phases, known as bursting. Here, we propose that bursting calcium oscillations can perform the function of simultaneous transmission of two signals at physiological calcium concentrations, for example, by selective activation of two calcium-binding proteins. This differential regulation by periodic bursting is investigated in a theoretical model. The two proteins are assumed to be activated by calcium, and one of them is assumed to be subject to biphasic regulation due to additional inhibitory binding sites. To explore which characteristics of the complex signal could be responsible for independent regulation of low-peak activated and spike activated targets, different bursting patterns of simplified square pulses are applied. Depending on the change in the bursting pattern, one protein can be gradually activated at a constant level of the other protein's activity, or the two proteins can be activated simultaneously, or one protein can be activated while the other one is deactivated simultaneously. Thus, the two proteins can be regulated virtually independently.  相似文献   

18.
Ras proteins are synthesized as cytosolic precursors, but then undergo posttranslational lipid addition, membrane association, and subcellular targeting to the plasma membrane. Although the enzymes responsible for farnesyl and palmitoyl lipid addition have been described, the mechanism by which these modifications contribute to the subcellular localization of Ras is not known. Following addition of the farnesyl group, Ras associates with the endoplasmic reticulum (ER), where palmitoylation occurs in Saccharomyces cerevisiae. The subsequent translocation of Ras from the ER to the plasma membrane does not require the classical secretory pathway or a functional Golgi apparatus. Vesicular and nonvesicular transport pathways for Ras proteins have been proposed, but the pathway is not known. Here we describe a genetic screen designed to identify mutants defective in Ras trafficking in S. cerevisiae. The screen implicates, for the first time, the class C VPS complex in Ras trafficking. Vps proteins are best characterized for their role in endosome and vacuole membrane fusion. However, the role of the class C Vps complex in Ras trafficking is distinct from its role in endosome and vacuole vesicle fusion, as a mitochondrial involvement was uncovered. Disruption of class C VPS genes results in mitochondrial defects and an accumulation of Ras proteins on mitochondrial membranes. Ras also fractionates with mitochondria in wild-type cells, where it is detected on the outer mitochondrial membrane by virtue of its sensitivity to protease treatment. These results point to a previously uncharacterized role of mitochondria in the subcellular trafficking of Ras proteins.  相似文献   

19.
Recent advances in imaging technology have revealed oscillations of cyclic adenosine monophosphate (cAMP) in insulin-secreting cells. These oscillations may be in phase with cytosolic calcium oscillations or out of phase. cAMP oscillations have previously been modeled as driven by oscillations in calcium, based on the known dependence of the enzymes that generate cAMP (adenylyl cyclase) and degrade it (phosphodiesterase). However, cAMP oscillations have also been reported to occur in the absence of calcium oscillations. Motivated by similarities between the properties of cAMP and metabolic oscillations in pancreatic β cells, we propose here that in addition to direct control by calcium, cAMP is controlled by metabolism. Specifically, we hypothesize that AMP inhibits adenylyl cyclase. We incorporate this hypothesis into the dual oscillator model for β cells, in which metabolic (glycolytic) oscillations cooperate with modulation of ion channels and metabolism by calcium. We show that the combination of oscillations in AMP and calcium in the dual oscillator model can account for the diverse oscillatory patterns that have been observed, as well as for experimental perturbations of those patterns. Predictions to further test the model are provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号