首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of kainate-induced wet-dog shakes in the rat   总被引:2,自引:0,他引:2  
Four experiments were undertaken to investigate the specificity of kainate-induced wet-dog shakes (WDS) to glutamate and morphine sensitive brain systems. It was shown that intraventricular (icv) administration was much more effective than intracisternal (ic) administration of kainate in producing WDS. This difference was shown not to be due to etherization of the animals during intracisternal injections. Also, like endorphin-induced WDS, kainate-induced WDS were blocked by naloxone. Kainate-induced WDS were substantially reduced by the glutamate receptor blocking agent GDEE. In a study of the relationship between morphine and kainate, behaviors induced by a low dose of morphine (such as grooming and darting movements) were blocked by subsequent administration of kainate. However, kainate-induced WDS were not affected by the morphine treatment.  相似文献   

2.
In Retzius neurones of the medicinal leech, Hirudo medicinalis, kainate activates ionotropic glutamate receptors classified as AMPA/kainate receptors. Activation of the AMPA/kainate receptor-coupled cation channels evokes a marked depolarization, intracellular acidification, and increases in the intracellular concentrations of Na+ ([Na+]i) and Ca2+. Qualitatively similar changes are observed upon the application of carbachol, an activator of acetylcholine receptor-coupled cation channels. Using multibarrelled ion-selective microelectrodes it was demonstrated that kainate, but not carbachol, caused additional increases in the intracellular free Mg2+ concentration ([Mg2+]i). Experiments were designed to investigate whether this kainate-induced [Mg2+]i increase was due to a direct Mg2+ influx through the AMPA/kainate receptor-coupled cation channels or a secondary effect due to the depolarization or the ionic changes. It was found that: (a) Similar [Mg2+]i increases were evoked by the application of glutamate or aspartate. (b) All kainate-induced effects were inhibited by the glutamatergic antagonist DNQX. (c) The magnitude of the [Mg2+]i increases depended on the extracellular Mg2+ concentration. (d) A reduction of the extracellular Ca2+ concentration increased kainate-induced [Mg2+]i increases, excluding possible Ca2+ interference at the Mg2+-selective microelectrode or at intracellular buffer sites. (e) Neither depolarizations evoked by the application of 30 mM K+, nor [Na+]i increases induced by the inhibition of the Na+/K+ ATPase caused comparable [Mg2+]i increases. (f) Inhibitors of voltage-dependent Ca2+ channels did not affect the kainate-induced [Mg2+]i increases. Moreover, previous experiments had already shown that intracellular acidification evoked by the application of 20 mM propionate did not cause changes in [Mg2+]i. The results indicate that kainate-induced [Mg2+]i increases in leech Retzius neurones are due to an influx of extracellular Mg2+ through the AMPA/kainate receptor-coupled cation channel. Mg2+ may thus act as an intracellular signal to distinguish between glutamatergic and cholinergic activation of leech Retzius neurones.  相似文献   

3.
Resveratrol (Res) is a phytoalexin produced naturally by several plants, which has multi functional effects such as neuroprotection, anti-inflammatory, and anti-cancer. The present study was to evaluate a possible anti-epileptic effect of Res against kainate-induced temporal lobe epilepsy (TLE) in rat. We performed behavior monitoring, intracranial electroencepholography (IEEG) recording, histological analysis, and Western blotting to evaluate the anti-epilepsy effect of Res in kainate-induced epileptic rats. Res decreased the frequency of spontaneous seizures and inhibited the epileptiform discharges. Moreover, Res could protect neurons against kainate-induced neuronal cell death in CA1 and CA3a regions and depressed mossy fiber sprouting, which are general histological characteristics both in TLE patients and animal models. Western blot revealed that the expression level of kainate receptors (KARs) in hippocampus was reduced in Res-administrated rats compared to that in epileptic ones. These results suggest that Res is a potent anti-epilepsy agent, which protects against epileptogenesis and progression of the kainate-induced TLE animal. The authors Z. Wu and Q. Xu contributed equally to this work.  相似文献   

4.
Susceptibility to kainate-induced seizures is enhanced by zinc deficiency. To evaluate kainate-induced excitotoxicity in zinc deficiency, the relationship between kainate-induced seizures and hippocampal cell death was examined in control and zinc-deficient mice. Mice were fed a control and zinc-deficient diet for 4 weeks, and then intraperitoneally injected with 12 mg/kg kainate every 60 min three times. The rate of dead mice to the total mice was higher in zinc-deficient group than in control group 3 days after the last injection of kainate. In the survivals, which exhibited tonic convulsions in both control and zinc-deficient groups, kainate-induced hippocampal cell death was also analyzed by cresyl violet staining. Neuronal loss was more observed in the CA1, CA2 and CA3 pyramidal cell layers of zinc-deficient group than those of the control group. TUNEL-positive cells were significantly more detected in the CA1 and CA3 pyramidal cell layers of zinc-deficient group. These results demonstrate that kainate-induced hippocampal cell death occurs more easily in zinc deficiency. Extracellular zinc concentration detected with ZnAF-2 was significantly decreased in the hippocampal CA3 of zinc-deficient mice, in agreement with the previous data measured by in vivo microdialsysis. Synaptically released zinc may be less involved in kainate-induced hippocampal cell death in zinc deficiency.  相似文献   

5.
Abstract: The functional expression of the kainate subtype of glutamate receptor (GluR) has been investigated in cultured rat cerebellar granule cells using single cell intracellular calcium ([Ca2+]i) measurements. Both AMPA- and kainate-induced [Ca2+]i increases could be blocked completely by the AMPA receptor-selective antagonist LY300168 (50 µ M ). However, following treatment with concanavalin A, an inhibitor of kainate receptor desensitisation, 30% of cells showed a kainate-induced [Ca2+]i rise of >100 n M in the presence of LY300168. Responses to 30 µ M kainate in the presence of LY300168 were virtually abolished by the AMPA and GluR5 kainate receptor competitive antagonist LY293558 (100 µ M ). These results demonstrate the presence of functional kainate receptors on cultured cerebellar granule cells, and suggest that the GluR5 subtype of kainate receptor plays a significant role in kainate receptor-mediated [Ca2+]i increases.  相似文献   

6.
Resistance arteries are able to adapt to physiological and pathophysiological stimuli to maintain adequate perfusion according to the metabolic demand of the tissue. Although vasomotor control allows rapid adaptation of lumen diameter, vascular remodeling constitutes an active process that occurs in response to long-term alterations of hemodynamic parameters. Unfortunately, this initially adaptive process contributes to the pathology of vascular diseases. Recent studies have demonstrated the participation of Rho protein signaling pathways in several cardiovascular pathologies including hypertension, coronary artery spasm, effort angina, atherosclerosis, and restenosis. Functional analyses have further revealed that RhoA-dependent pathways are involved in excessive contraction, migration, and proliferation associated with arterial diseases. The present review focuses on the role of Rho proteins, in particular RhoA, in vascular smooth muscle cells and the involvement of Rho-dependent signaling pathways in resistance artery remodeling, more particularly in relation to hypertension.  相似文献   

7.
Excitatory amino acids are known to induce considerable neurotoxicity in central nervous system. In the present study, the neurotoxicity was induced by application of kainate or AMPA in chick telencephalic neuron, and neuroprotective activity was tested with complestatin that was isolated from streptomyces species. In cultured telencephalic neurons exposed to 500 M kainate for 2 days, the AMPA/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX, 5 M) completely blocked kainate-induced neurotoxicity. Also, complestatin (0.5 M) completely blocked kainate-induced neuronal injury at a concentration lower than that required for prototype AMPA/kainate receptor antagonist DNQX. In addition, complestatin blocked AMPA-induced neurotoxicity when the neurons were pretreated with cyclothiazide, a desensitization blocker of AMPA receptor. Surprisingly, when the onset of the treatment was delayed for 6 hours, complestatin led to a reduction in kainate-induced neuronal injury. While inhibition of protein kinase C (PKC) by staurosporin induced neurotoxicity, that was blocked by complestatin. Activation of PKC by phorbol dibutyrate partially inhibited the kainate-induced neurotoxicity. These results suggest that complestatin may be used as an anti-excitotoxic agent and involved in the PKC activation contributing to inhibition of neurotoxicity.  相似文献   

8.
Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured cerebellar granule neurons in vitro. We have investigated the effects of pretreatment with NMDA on kainate-induced neuronal cell death in mouse hippocampus in vivo. The systemic administration of kainate (30 mg/kg), but not NMDA (100 mg/kg), induced severe damage in pyramidal neurons of the hippocampal CA1 and CA3 subfields 3-7 days later, without affecting granule neurons in the dentate gyrus. An immunohistochemical study using an anti-single-stranded DNA antibody and TdT-mediated dUTP nick end labeling analysis both revealed that kainate, but not NMDA, induced DNA fragmentation in the CA1 and CA3 pyramidal neurons 1-3 days after administration. Kainate-induced neuronal loss was completely prevented by the systemic administration of NMDA (100 mg/kg) 1 h to 1 day previously. No pyramidal neuron was seen with fragmented DNA in the hippocampus of animals injected with kainate 1 day after NMDA treatment. The neuroprotection mediated by NMDA was prevented by the non-competitive NMDA receptor antagonist MK-801. Taken together these results indicate that in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation in murine hippocampus.  相似文献   

9.
Cyclic AMP-Elevating Agents Prevent Oligodendroglial Excitotoxicity   总被引:1,自引:0,他引:1  
Abstract: Previously, we have demonstrated that cells of the oligodendroglial lineage express non-NMDA glutamate receptor genes and are damaged by kainate-induced Ca2+ influx via non-NMDA glutamate receptor channels, representing oligodendroglial excitotoxicity. We find in the present study that agents that elevate intracellular cyclic AMP prevent oligodendroglial excitotoxicity. After oligodendrocyte-like cells, differentiated from the CG-4 cell line established from rat oligodendrocyte type-2 astrocyte progenitor cells, were exposed to 2 mM kainate for 24 h, cell death was evaluated by measuring activity of lactate dehydrogenase released into the culture medium. Released lactate dehydrogenase increased about threefold when exposed to 2 mM kainate. Kainate-induced cell death was prevented by one of the following agents: adenylate cyclase activator (forskolin), cyclic AMP analogues (dibutyryl cyclic AMP and 8-bromo-cyclic AMP), and cyclic AMP phosphodiesterase inhibitors (3-isobutyl-1-methylxanthine, pentoxifylline, propentofylline, and ibudilast). Simultaneous addition of both forskolin and phosphodiesterase inhibitors prevented the kainate-induced cell death in an additive manner. A remarkable increase in Ca2+ influx (~5.5-fold) also was induced by kainate. The cyclic AMP-elevating agents caused a partial suppression of the kainate-induced increase in Ca2+ influx, leading to a less prominent response of intracellular Ca2+ concentration to kainate. The suppressing effect of forskolin on the kainate-induced Ca2+ influx was partially reversed by H-89, an inhibitor of cyclic AMP-dependent protein kinase. In contrast to this, okadaic acid, an inhibitor of protein phosphatases 1 and 2A, brought about a decrease in the kainate-induced Ca2+ influx. We therefore concluded that cyclic AMP-elevating agents prevented oligodendroglial excitotoxicity by cyclic AMP-dependent protein kinase-dependent protein phosphorylation, resulting in decreased kainate-induced Ca2+ influx.  相似文献   

10.
In order to determine whether the status epilepticus leads to alterations in the neurosteroid effect on excitatory amino acid transmission, we studied the influence of allopregnanolone on aspartate release and glutamate uptake in mouse hippocampus at various times after kainate administration. No significant differences in the K+-stimulated D-[3H]-aspartate release from the hippocampi of saline- and kainate-treated mice were observed; however, that parameter tended to fall in tissues collected I h after kainate administration. Allopregnanolone significantly attenuated the K+-stimulated D-[3H]-aspartate release from the hippocampi of control animals, as well at 24 h and 7 days after kainate injection; in contrast it did not affect amino acid release from the hippocampi collected 1 h after kainate administration. Kainate administration had no effect on [3H]-glutamate uptake after 1 and 24 h, but elevated that parameter on day 7. Allopregnanolone (10 and 100 microM) did not affect [3H]-glutamate uptake in control and kainate-treated mice. In conclusion, the present study indicates a loss of the inhibitory effect of allopregnanolone on the potasium-stimulated D-[3H]-aspartate release from mouse hippocampus during the kainate-induced status epilepticus; moreover, it excludes involvement of this neurosteroid in the regulation of hippocampal [3H]-glutamate uptake in both control and kainate-treated mice.  相似文献   

11.
Involvement of p38alpha in kainate-induced seizure and neuronal cell damage   总被引:2,自引:0,他引:2  
We investigated how p38alpha mitogen-activated protein kinase (p38) is related to kainate-induced epilepsy and neuronal damages, by using the mice with a single copy disruption of the p38 alpha gene (p38alpha(+/-)). Mortality rate and seizure score of p38alpha(+/-) mice administered with kainate were significantly reduced compared with the case of wild-type (WT) mice. This was clearly supported by the electroencephalography data in which kainate-induced seizure duration and frequency in the brain of p38alpha(+/-) mice were significantly suppressed compared to those of WT mice. As a consequence of seizure, kainate induced delayed neuronal damages in parallel with astrocytic growth in the hippocampus and ectopic innervation of the mossy fibers into the stratum oriens in the CA3 region of hippocampus in WT mice, whose changes were moderate in p38alpha(+/-) mice. Likewise, kainate-induced phosphorylation of calcium/calmodulin-dependent kinase II in the hippocampus of p38alpha (+/-) mice was significantly decreased compared to that of WT mice. These results suggest that p38alpha signaling pathway plays an important role in epileptic seizure and excitotoxicity.  相似文献   

12.
We investigated how p38α mitogen-activated protein kinase (p38) is related to kainate-induced epilepsy and neuronal damages, by using the mice with a single copy disruption of the p38 α gene (p38α+/?). Mortality rate and seizure score of p38α+/? mice administered with kainate were significantly reduced compared with the case of wild-type (WT) mice. This was clearly supported by the electroencephalography data in which kainate-induced seizure duration and frequency in the brain of p38α+/? mice were significantly suppressed compared to those of WT mice. As a consequence of seizure, kainate induced delayed neuronal damages in parallel with astrocytic growth in the hippocampus and ectopic innervation of the mossy fibers into the stratum oriens in the CA3 region of hippocampus in WT mice, whose changes were moderate in p38α+/? mice. Likewise, kainate-induced phosphorylation of calcium/calmodulin-dependent kinase II in the hippocampus of p38α +/? mice was significantly decreased compared to that of WT mice. These results suggest that p38α signaling pathway plays an important role in epileptic seizure and excitotoxicity.  相似文献   

13.
Young (25-day-old) and adult (90-day-old) rats pretreated with ethosuximide (62.5 or 125 mg/kg i.p.) were injected with either s.c. pentylenetetrazole (100 mg/kg) or i.p. kainate (10 or 14 mg/kg). The incidences and latencies of minor (clonic) and major (tonic-clonic) seizures were registered. Ethosuximide (125 mg/kg) completely blocked clonic seizures induced by the lower dose of kainate, and slightly suppressed or delayed those induced by the higher dose of kainate or pentylenetetrazole in both age groups. The effect of ethosuximide on major kainate-induced seizures (elicited in young rats only) was insignificant (ethosuximide only partially decreased the incidence of major seizures), whereas ethosuximide abolished major pentylenetetrazole-induced seizures in both age groups. Ethosuximide also failed to affect the latencies of kainate-induced automatisms (e.g., scratching, wet dog shakes). Similarities between kainate- and pentylenetetrazole-induced clonic seizures, as well as a similar action of ethosuximide on both, suggest a common generator for the pattern of clonic seizures.  相似文献   

14.
The neuroexcitotoxin kainate has been used as a selective lesioning agent to model the etiology of a number of neurodegenerative disorders. Although excitotoxins cause susceptible neurons to undergo prolonged or repeated depolarization, the proximate metabolic pathology responsible for neuronal necrosis has remained elusive. We report here that kainate-induced death of cerebellar neurons in culture is prevented by inhibiting the enzyme xanthine oxidase, a cellular source of cytotoxic superoxide radicals (O2-.). Moreover, neurons are also protected from excitotoxin-induced death by the addition to the culture medium of either superoxide dismutase or mannitol, which scavenge superoxide and hydroxyl radicals, respectively, or serine protease inhibitor, which forestalls formation of xanthine oxidase. These findings indicate that excitotoxin-induced neuronal degeneration is mediated by superoxide radicals generated by xanthine oxidase, a mechanism partially analogous to that proposed for tissue damage seen upon reperfusion of ischemic tissues.  相似文献   

15.
The effects of acute and extended ethanol exposure on N-methyl-D-aspartate- and kainate-induced currents were examined electrophysiologically in Xenopus oocytes expressing rat hippocampal mRNA. Ethanol inhibited responses stimulated by low and high concentrations of N-methyl-D-aspartate to a similar degree. However, responses produced by low or high concentrations of kainate were differentially inhibited by ethanol. Low kainate concentration responses were much more sensitive to ethanol than high kainate concentrations (e.g., 50 mM ethanol inhibited 12.5 microM kainate responses by 45% compared to 15% inhibition of 400 microM kainate responses). In oocytes cultured in 100 mM ethanol for 1-5 days, the ethanol inhibition of maximum N-methyl-D-aspartate and kainate responses was not different from that in non-ethanol-exposed oocytes. Ethanol treatment, however, selectively decreased the ethanol sensitivity of low kainate concentration responses. Currents stimulated by N-methyl-D-aspartate or kainate were not different between control and ethanol-treated oocytes, indicating that ethanol exposure did not interfere with channel expression. The selective actions of acute and extended ethanol exposure on low kainate responses may indicate selective actions of ethanol on subtypes of kainate receptors expressed in oocytes.  相似文献   

16.
The ED50 for loss of righting behaviour of cockroaches induced by kainate (43 mumol/kg body weight) indicated the toxicity of kainate to be much greater than would have been predicted from the excitatory action of this amino acid at insect skeletal muscle fibres. N-Methyl-D-aspartate had little effect on righting behaviour (ED50 greater than 3500 mumol/g body weight). Electrical recordings from the locust ventral nerve cord showed kainate (0.1-2 mM) to have a depolarizing action on neurons within the metathoracic ganglion. The depolarizing action of kainate was partially resistant to tetrodotoxin. The kainate-induced abolition of rostrally evoked potentials recorded in the abdominal connectives from the metathoracic ganglion suggests that the giant fibres are sensitive to kainate. Domoic acid was 46 times more potent than kainate. The lack of effect of N-methyl-D-aspartate (2 mM), dihydrokainate (2 mM), quisqualate (2 mM) and L-glutamate (20 mM) on nerve cords in the present experiments suggests that the kainate receptors in this preparation show a chemical selectivity comparable to that observed at vertebrate central neurones.  相似文献   

17.
On the basis of the previous evidence that 65Zn concentrations in the brain of EL (epilepsy) mice was affected by induction of seizures, 65Zn movement in the brain was quantitatively evaluated in ddY mice treated with kainate. Six days after intravenous injection of 65ZnCl2, mice were intraperitoneally injected with kainate (10 mg/kg x 6 times in 2 weeks). Myoclonic jerks were observed during treatment with kainate. Twenty days after 65Zn injection, 65Zn distribution in the brain was compared between the kainite-treated and control mice. 65Zn distribution in the brain of the kainate-treated mice was overall lower than in the control mice. 65Zn concentration was significantly decreased in the frontal cortex, hippocampal CA1, thalamus and hypothalamus by treatment with kainate. These results demonstrate that kainate-induced seizures are linked to decreased zinc concentrations in the brain.  相似文献   

18.
The pathogenesis of sporadic cerebellar ataxia remains unknown. In this study, we demonstrate that proinflammatory cytokines, IL-18 and IL-1beta, reciprocally regulate kainate-induced cerebellar ataxia in mice. We show that systemic administration of kainate activated IL-1beta and IL-18 predominantly in the cerebellum of mice, which was accompanied with ataxia. Mice deficient in caspase-1, IL-1R type I, or MyD88 were resistant to kainate-induced ataxia, while IL-18- or IL-18R alpha-deficient mice displayed significant delay of recovery from ataxia. A direct intracerebellar injection of IL-1beta-induced ataxia and intracerebellar coinjection of IL-18 counteracted the effect of IL-1beta. Our data firstly show that IL-18 and IL-1beta display differential direct regulation in kainate-induced ataxia in mice. Our results might contribute toward the development of a new therapeutic strategy for cerebellar ataxia in humans.  相似文献   

19.
20.
Following injection of rat striatal and cerebrellar mRNA, Xenopus oocytes were voltage clamped and current responses to the excitatory amino acid receptor agonist, kainate, were recorded. This nonspecific cationic current is carried principally by Na+ and K+ and reverses polarity at a membrane potential of approximately -5 mV. When the membrane potential was voltage clamped to -60 mV, bath-applied tetrabutylammonium (0.1-30 mM) produced a rapid, concentration dependent and reversible block of kainate-induced inward current with an IC50 of 1.3 mM. Tetraalkylammonium derivatives having shorter chains (methyl, ethyl, and propyl) were relatively ineffective blockers. Longer alkyl chain derivatives (pentyl, hexyl, and heptyl) were more potent than tetrabutylammonium but limited in their usefulness by their toxicity. The antagonism of kainate-induced current by tetrabutylammonium displayed apparently uncompetitive kinetics, in contrast with the competitive antagonism by gamma-D-glutamylaminomethylsulfonate. The block by tetrabutylammonium was strongly voltage dependent; an e-fold change in IC50 was observed for a 27 mV change in holding potential. Replacement of the Na+ in the medium with a more permeant cation (NH4+), a less permeant cation (tetramethylammonium), or an uncharged solute (mannitol) had little effect on the block of kainate-induced current by tetrabutylammonium. The rates of association and dissociation of tetrabutylammonium with the kainate receptor-channel are clearly rapid. These observations suggest that tetrabutylammonium enters and blocks the kainate receptor-associated cation selective channel. Tetrabutylammonium appears to traverse 80-90% of the membrane electrical field to reach a relatively low-affinity binding site that may simply be a narrowing of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号