首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
DNA sequence data were collected and screened for single nucleotide polymorphisms (SNPs) in westslope cutthroat trout (Oncorhynchus clarki lewisi) and also for substitutions that could be used to genetically discriminate rainbow trout (O. mykiss) and cutthroat trout, as well as several cutthroat trout subspecies. In total, 260 expressed sequence tag‐derived loci were sequenced and allelic discrimination genotyping assays developed from 217 of the variable sites. Another 50 putative SNPs in westslope cutthroat trout were identified by restriction‐site‐associated DNA sequencing, and seven of these were developed into assays. Twelve O. mykiss SNP assays that were variable within westslope cutthroat trout and 12 previously published SNP assays were also included in downstream testing. A total of 241 assays were tested on six westslope cutthroat trout populations (N = 32 per population), as well as collections of four other cutthroat trout subspecies and a population of rainbow trout. All assays were evaluated for reliability and deviation from Hardy–Weinberg and linkage equilibria. Poorly performing and duplicate assays were removed from the data set, and the remaining 200 assays were used in tests of population differentiation. The remaining markers easily distinguished the various subspecies tested, as evidenced by mean GST of 0.74. A smaller subset of the markers (N = 86; average GST = 0.40) was useful for distinguishing the six populations of westslope cutthroat trout. This study increases by an order of magnitude the number of genetic markers available for the study of westslope cutthroat trout and closely related taxa and includes many markers in genes (developed from ESTs).  相似文献   

2.
Thirteen newly developed tri- and tetranucleotide repeat microsatellite markers were developed for Lahontan cutthroat trout (Oncorhynchus clarki henshawi), a threatened subspecies endemic to the Lahontan hydrographic basin in the western USA. These loci are highly polymorphic with five to 30 alleles per locus and observed heterozygosities ranging from 0.4 to 0.7. Cross-species amplification of these markers was most successful in the closely related rainbow trout, Oncorhynchus mykiss, with only three loci amplifying in brown trout, Salmo trutta. Nonoverlapping allelic distributions for many of these loci among the six salmonid species screened suggest these markers may be useful for hybrid determination.  相似文献   

3.
We describe the isolation and characterization of 12 tetranucleotide microsatellites for Rio Grande cutthroat trout (Oncorhynchus clarkii virginalis) and rainbow trout (Oncorhynchus mykiss), and subsequently investigate their performance in Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus), greenback cutthroat trout (Oncorhynchus clarkii stomias) and Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). All 12 loci are polymorphic in all subspecies of O. clarkii examined.  相似文献   

4.
The Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) is threatened by habitat destruction, over‐harvest and hybridization with nonnative trout. Currently, three Geographic Management Units (GMUs) are recognized within the taxon. Here, we describe a suite of 68 single‐nucleotide polymorphism (SNP) genetic markers for use in the study and management of Lahontan cutthroat trout and a closely related subspecies, the Paiute cutthroat trout (O. c. seleneris). These include markers variable within the two subspecies (n = 35), diagnostic for the two subspecies (n = 23) and diagnostic for Yellowstone cutthroat trout (O. c. bouvieri) and other closely related subspecies (n = 10). Sixty‐three markers were discovered by Sanger sequencing of 171 EST loci in an ascertainment panel including Lahontan cutthroat trout from four populations representing all GMUs. Five markers were identified in a secondary sequencing effort with a single population of Lahontan cutthroat trout. TaqMan assays were validated on six Lahontan cutthroat trout populations and a diverse panel of other trout. Over 90% of the markers variable in Lahontan cutthroat trout were polymorphic in at least two populations, and 66% were variable within all three GMUs. All Lahontan diagnostic markers were also fixed for the Lahontan allele in Paiute cutthroat trout. Most of the Yellowstone diagnostic markers can also be used for this purpose in other cutthroat trout subspecies. This is the first set of SNP markers to be developed for Lahontan cutthroat trout, and will be an important tool for conservation and management.  相似文献   

5.
Five genetic markers previously shown to be located on the sex chromosomes of rainbow trout (Oncorhynchus mykiss) were tested for linkage with the sex locus of Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri) in a genetic cross created from a rainbow x cutthroat male hybrid. We show that the sex locus of both rainbow and cutthroat trout is on the same homologous linkage group. Fluorescence in situ hybridization (FISH) using a probe for the microsatellite marker Omm1665, which maps close to the sex locus of Yellowstone cutthroat trout, was used to identify the Y chromosome of cutthroat trout in the hybrid. The Y chromosome of cutthroat trout is sub-telocentric and lacks a DAPI band found on the short arm of the Y chromosome of some rainbow trout males.  相似文献   

6.
Ten polymorphic microsatellite loci (containing tri and tetra‐nucleotide repeats) were developed for the Lahontan cutthroat trout (Oncorhynchus clarki henshawi), a subspecies of cutthroat trout listed as threatened under the United States Endangered Species Act. Polymorphism was assessed for 445 individuals from 12 populations representing eight watersheds spread throughout the three Distinct Population Segments defined for this subspecies. All loci were polymorphic (X? = 19, range 7–26 alleles). All loci were in Hardy–Weinberg equilibrium (HWE) except for one locus (OCH 9) in a single population (P < 0.00014 after Bonferroni correction for multiple tests).  相似文献   

7.
Interspecific hybridization represents a dynamic evolutionary phenomenon and major conservation problem in salmonid fishes. In this study we used amplified fragment length polymorphisms (AFLP) and mitochondrial DNA (mtDNA) markers to describe the extent and characterize the pattern of hybridization and introgression between coastal rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Hybrid individuals were initially identified using principle coordinate analysis of 133 polymorphic AFLP markers. Subsequent analysis using 23 diagnostic AFLP markers revealed the presence of F1, rainbow trout backcross, cutthroat trout backcross and later-generation hybrids. mtDNA analysis demonstrated equal numbers of F1 hybrids with rainbow and cutthroat trout mtDNA indicating reciprocal mating of the parental types. In contrast, rainbow and cutthroat trout backcross hybrids always exhibited the mtDNA from the recurrent parent, indicating a male hybrid mating with a pure female. This study illustrates the usefulness of the AFLP technique for generating large numbers of species diagnostic markers. The pattern of hybridization raises many questions concerning the existence and action of reproductive isolating mechanisms between these two species. Our findings are consistent with the hypothesis that introgression between anadromous populations of coastal rainbow and coastal cutthroat trout is limited by an environment-dependent reduction in hybrid fitness.  相似文献   

8.
A suite of 26 PCR‐based markers was developed that differentiates rainbow (Oncorhynchus mykiss) and coastal cutthroat trout (O. clarki clarki). The markers also differentiated rainbow from other cutthroat trout subspecies (O. clarki), and several of the markers differentiated between cutthroat trout subspecies. This system has numerous positive attributes, including: nonlethal sampling, high species‐specificity and products that are easily identified and scored using agarose gel electrophoresis. The methodology described for developing the markers can be applied to virtually any system in which numerous markers are desired for identifying or differentiating species or subspecies.  相似文献   

9.
Accurate assessment of species identity is fundamental for conservation biology. Using molecular markers from the mitochondrial and nuclear genomes, we discovered that many putatively native populations of greenback cutthroat trout (Oncorhynchus clarkii stomias) comprised another subspecies of cutthroat trout, Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). The error can be explained by the introduction of Colorado River cutthroat trout throughout the native range of greenback cutthroat trout in the late 19th and early 20th centuries by fish stocking activities. Our results suggest greenback cutthroat trout within its native range is at a higher risk of extinction than ever before despite conservation activities spanning more than two decades.  相似文献   

10.
The genetic population structure of coastal cutthroat trout ( Oncorhynchus clarki clarki ) in Washington state was investigated by analysis of variation in allele frequencies at six highly polymorphic microsatellite loci for 13 anadromous populations, along with one outgroup population from the Yellowstone subspecies ( O. clarki bouvieri) (mean heterozygosity = 67%; average number of alleles per locus = 24). Tests for genetic differentiation revealed highly significant differences in genotypic frequencies for pairwise comparisons between all populations within geographical regions and overall population subdivision was substantial ( F ST = 0.121, R ST = 0.093), with 44.6% and 55.4% of the among-population diversity being attributable to differences between streams ( F SR = 0.054) and between regions ( F RT = 0.067), respectively. Analysis of genetic distances and geographical distances did not support a simple model of isolation by distance for these populations. With one exception, neighbour-joining dendrograms from the Cavalli-Sforza and Edwards' chord distances and maximum likelihood algorithms clustered populations by physiogeographic region, although overall bootstrap support was relatively low (53%). Our results suggest that coastal cutthroat trout populations are ultimately structured genetically at the level of individual streams. It appears that the dynamic balance between gene flow and genetic drift in the subspecies favours a high degree of genetic differentiation and population subdivision with the simultaneous maintenance of high heterozygosity levels within local populations. Results are discussed in terms of coastal cutthroat trout ecology along with implications for the designation of evolutionarily significant units pursuant to the US Endangered Species Act of 1973 and analogous conservation units.  相似文献   

11.
Restriction site variation in the Ikaros gene intron was used to assess the incidence of westslope cutthroat trout ( Oncorhynchus clarki lewisi ), rainbow trout ( O. mykiss ) and interspecific hybrids at 11 localities among eight streams tributary to the upper Kootenay River system in south-eastern British Columbia, Canada. Out of 356 fish assayed by this technique, hybrids ( n =16) were found at seven of the 11 sites across five different streams. Rainbow trout ( n =6) were found at two of the 11 sites. Analysis of hybrids with a second genetic marker (heat shock 71 intron) indicated that most represented either backcrosses to both westslope cutthroat and rainbow trout, or post F1 hybrids. Mitochondrial DNA analysis indicated that hybrid matings occur between male rainbow trout and female westslope cutthroat trout and vice versa. Comparison of present hybridization in five tributaries relative to an allozyme-based analysis in the mid-1980s, that documented hybrids in only a single tributary of seven that were common to the two studies, suggests that hybridization and introgression has increased in upper Kootenay River tributaries. The present analysis is a conservative estimate of genetic interaction between the species because introgression was not tested in the majority of samples. Identification of genetically pure westslope cutthroat trout populations, and why they might be resistant to introgression from rainbow trout, are crucial conservation priorities for this unique subspecies of cutthroat trout.  相似文献   

12.
Eight polymerase chain reaction primer sets amplifying bi‐parentally inherited species‐specific markers were developed that differentiate between rainbow trout (Oncorhynchus mykiss) and various cutthroat trout (O. clarki) subspecies. The primers were tested within known F1 and first generation hybrid backcrosses and were shown to amplify codominantly within hybrids. Heterozygous individuals also amplified a slower migrating band that was a heteroduplex, caused by the annealing of polymerase chain reaction products from both species. These primer sets have numerous advantages for native cutthroat trout conservation including statistical genetic analyses of known crosses and simple hybrid identification.  相似文献   

13.
We examined the developmental rate of hybrids between rainbow trout (Salmo gairdneri) and two subspecies of cutthroat trout: westslope cutthroat trout (Salmo clarki lewisi) and Yellowstone cutthroat trout (Salmo clarki bouvieri). These taxa show considerable genetic divergence at 42 structural loci encoding enzymes; the mean Nei's d between the rainbow trout and the two species of cutthroat trout is 0.22. We used four measures of developmental rate: time of hatching and yolk resorption, rate of increase in activity of four enzymes, and time of initial detection of seven isozyme loci. The two cutthroat trout subspecies reached hatching and yolk resorption earlier than rainbow trout. Cutthroat trout had higher relative enzyme activities than rainbow trout from deposition of eye pigment to hatching. There was no difference in the rate of increase in enzyme activity or time of initial expression of these loci between these species. Hybrids showed developmental rates intermediate or similar to that of the parental species using all measures. Our results indicate an absence of regulatory and developmental incompatibility between these taxa.This research was supported by NSF Grants ISP-8011449 and BSR-8300039. M.M.F. was supported by a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

14.
Hybridization between sympatric species provides unique opportunities to examine the contrast between mechanisms that promote hybridization and maintain species integrity. We surveyed hybridization between sympatric coastal steelhead (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki) from two streams in Washington State, Olsen Creek (256 individuals sampled) and Jansen Creek (431 individuals sampled), over a 3-year period. We applied 11 O. mykiss-specific nuclear markers, 11 O. c. clarki-specific nuclear markers and a mitochondrial DNA marker to assess spatial partitioning among species and hybrids and determine the directionality of hybridization. F1 and post-F1 hybrids, respectively, composed an average of 1.2% and 33.6% of the population sampled in Jansen Creek, and 5.9% and 30.4% of the population sampled in Olsen Creek. A modest level of habitat partitioning among species and hybrids was detected. Mitochondrial DNA analysis indicated that all F1 hybrids (15 from Olsen Creek and five from Jansen Creek) arose from matings between steelhead females and cutthroat males implicating a sneak spawning behaviour by cutthroat males. First-generation cutthroat backcrosses contained O. c. clarki mtDNA more often than expected suggesting natural selection against F1 hybrids. More hybrids were backcrossed toward cutthroat than steelhead and our results indicate recurrent hybridization within these creeks. Age analysis demonstrated that hybrids were between 1 and 4 years old. These results suggest that within sympatric salmonid hybrid zones, exogenous processes (environmentally dependent factors) help to maintain the distinction between parental types through reduced fitness of hybrids within parental environments while divergent natural selection promotes parental types through distinct adaptive advantages of parental phenotypes.  相似文献   

15.
The increased numbers of genetic markers produced by genomic techniques have the potential to both identify hybrid individuals and localize chromosomal regions responding to selection and contributing to introgression. We used restriction-site-associated DNA sequencing to identify a dense set of candidate SNP loci with fixed allelic differences between introduced rainbow trout (Oncorhynchus mykiss) and native westslope cutthroat trout (Oncorhynchus clarkii lewisi). We distinguished candidate SNPs from homeologs (paralogs resulting from whole-genome duplication) by detecting excessively high observed heterozygosity and deviations from Hardy-Weinberg proportions. We identified 2923 candidate species-specific SNPs from a single Illumina sequencing lane containing 24 barcode-labelled individuals. Published sequence data and ongoing genome sequencing of rainbow trout will allow physical mapping of SNP loci for genome-wide scans and will also provide flanking sequence for design of qPCR-based TaqMan(?) assays for high-throughput, low-cost hybrid identification using a subset of 50-100 loci. This study demonstrates that it is now feasible to identify thousands of informative SNPs in nonmodel species quickly and at reasonable cost, even if no prior genomic information is available.  相似文献   

16.
Five microsatellite DNA loci (Ots-101 *,Ots-107 *,Oki-10 *, Ogo-3 *, and FGT-3 *) were screened to evaluate the genetic characteristics and population structure for cutthroat trout from eight tributaries of the Pend Oreille River in northeastern Washington and to compare these collections with two hatchery stocks of westslope cutthroat trout, Oncorhynchus clarki lewisi, Yellowstone cutthroat trout, Oncorhynchus clarki bouvieri and a hatchery rainbow trout, Oncorhynchus mykiss, strain that have been stocked in northeastern Washington. Relatively high levels of variation (numbers of alleles and heterozygosity) were observed in all collections and allele frequencies were quite variable among collections. Evidence of limited introgression by rainbow and/or Yellowstone cutthroat was found at several locations. Both FST values and tests of genetic differentiation indicated the existence of numerous, reproductively isolated populations. The population in Slate Creek was very similar to the Kings Lake Hatchery strain, and we conclude that this similarity is the result of historical introductions of this hatchery strain into what was presumably a stream without a native cutthroat population. In one stream, differences in introgression and allele frequencies were found above and below a barrier falls. Because of the substantial level of population differentiation observed among the various collections, we recommend that management and conservation actions be focused at the level of individual streams in order to maintain the productivity and genetic character of the existing populations of cutthroat trout.  相似文献   

17.
We compared the proportion of morphological variation accounted for by subspecies categories with the proportion encompassed by ecologically based categories in cutthroat trout ( Oncorhynchus clarkii ssp.), as a means of assessing the relative importance of each approach in identifying intraspecific diversity. We used linear and geometric morphometrics to compare measures of body shape, fin length, and head features between and within subspecies of cutthroat trout. Both categories accounted for a significant proportion of the variation between and within the subspecies; however, the larger proportion was explained by subspecific differences, with the greatest morphological divergence between coastal cutthroat trout ( Oncorhynchus clarkii clarkii ) and interior subspecies. Ecotypic categories within each subspecies also explained significant morphological differences: stream populations had longer fins and deeper, more robust bodies than lake populations. The largest ecotypic differences occurred between stream and lake populations of Yellowstone cutthroat trout ( Oncorhynchus clarkii bouvieri ). Given that many cutthroat trout subspecies are of conservation concern, our study offers a better understanding of intraspecific variation existing within the species, providing precautionary evidence of incipient speciation, and a framework of describing phenotypic diversity that is correlated with ecological conditions.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 266–281.  相似文献   

18.
The relative competitive ability of juvenile farm and wild salmonids was investigated to provide insight into the potential effects of introduction of cultured salmon on wild Pacific salmonid ( Oncorhynchus ) species. Aquarium experiments involving equal contests ( i.e. size matched, simultaneously introduced individuals) indicated that two wild coho salmon Oncorhynchus kisutch populations were competitively equal to a farm coho salmon population. In equal contests between farm Atlantic salmon Salmo salar (Mowi strain) and these wild coho salmon populations or coastal cutthroat trout Oncorhynchus clarki clarki , Atlantic salmon were subordinate in all cases. When Atlantic salmon were given a residence advantage, however, they were competitively equal to both wild coho salmon populations, but remained subordinate to coastal cutthroat trout. When Atlantic salmon were given a 10–30% length advantage, they were competitively equal to one wild coho salmon population but remained subordinate to the other. In equal contests in semi-natural stream channels, both wild coho and farm Atlantic salmon grew significantly more in the presence of the other species than when alone. It appears that coho salmon obtain additional food ration by out competing Atlantic salmon, whereas Atlantic salmon were stimulated to feed more in the presence of coho salmon competitors. These results suggest that wild coho salmon and cutthroat trout should out compete farm Atlantic salmon of a similar size in nature. As the relative competitive ability of Atlantic salmon improves when they have a size and residence advantage, should feral populations become established, they may exist on a more equal competitive footing owing to the long freshwater residence of Atlantic salmon.  相似文献   

19.
A visual foraging model (VFM) used light-dependent reaction distance and capture success functions to link observed prey fish abundance and distribution to predation rates and the foraging performance of piscivorous cutthroat trout Oncorhynchus clarki in Lake Washington (WA, U.S.A.). Total prey density did not correlate with predation potential estimated by the foraging model for cutthroat trout because prey were rarely distributed in optically favourable conditions for detection. Predictions of the depth-specific distribution and timing of cutthroat trout foraging were qualitatively similar to diel stomach fullness patterns observed in field samples. Nocturnal foraging accounted for 34–64% of all prey fish consumption in simulations for 2002 and 2003. Urban light contamination increased the access of nocturnally foraging cutthroat trout to vertically migrating prey fishes. These results suggest that VFMs are useful tools for converting observed prey fish density into predictions of predator consumptions and behavioural responses of predators to environmental change.  相似文献   

20.
Sequence divergence was evaluated in the non-recombining, male-specific OmyY1 region of the Y chromosome among the subspecies of cutthroat trout (Oncorhynchus clarkii) in the western United States. This evaluation identified subspecies-discriminating OmyY1-haplotypes within a ~1200 bp region of the OmyY1 locus and localized the region to the end of the Y chromosome by FISH analysis. OmyY1 sequences were aligned and used to reconstruct a phylogeny of the cutthroat trout subspecies and related species via maximum-parsimony and Bayesian analyses. In the Y-haplotype phylogeny, clade distributions generally corresponded to the geographic distributions of the recognized subspecies. This phylogeny generally corresponded to a mitochondrial tree obtained for these subspecies in a previous study. Both support a clade of trout vs. Pacific salmon, of rainbow trout, and of a Yellowstone cutthroat group within the cutthroat trout. In our OmyY1 tree, however, the cutthroat “clade”, although present topologically, was not statistically significant. Some key differences were found between trees obtained from the paternally-inherited OmyY1 vs. maternally-inherited mitochondrial haplotypes in cutthroat trout compared to rainbow trout. Other findings are: The trout OmyY1 region evolves between 3 and 13 times slower than the trout mitochondrial regions that have been studied. The Lahontan cutthroat trout had a fixed OmyY1 sequence throughout ten separate populations, suggesting this subspecies underwent a severe population bottleneck prior to its current dispersal throughout the Great Basin during the pluvial phase of the last ice age. The Yellowstone group is the most derived among the cutthroat trout and consists of the Yellowstone, Bonneville, Colorado, Rio Grande and greenback subspecies. Identification of subspecies and sex with this Y-chromosome marker may prove useful in conservation efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号