首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 731 毫秒
1.
The amino acid sequences of ferredoxins (Fd A and Fd B) from Japanese taro (Colocasia esculenta Schott) were determined. They consisted of single polypeptide chains of 98 residues, and both Fds had molecular masses of 10700 and 10500, respectively. There was a 92% homology between the sequences of the isoproteins (Fd A and Fd B). These sequences were compared with those of the closely related plant Fds and their phylogenetic tree was constructed. Two ferredoxin isoproteins from Hawaiian taro (Colocasia esculenta Schott) were also isolated and their N-terminal sequences were determined to be identical to those of Japanese taro.  相似文献   

2.
In higher plants ferredoxin (Fd):NADP(+) oxidoreductase (FNR) and Fd are each distributed in photosynthetic and non-photosynthetic organs as distinct isoproteins. We have cloned cDNAs for leaf FNR (L-FNR I and L-FNR II) and root FNR (R-FNR) from maize (Zea mays L.), and produced recombinant L-FNR I and R-FNR to study their enzymatic functions through kinetic and Fd-binding analyses. The K(m) value obtained by assay for a diaphorase activity indicated that R-FNR had a 10-fold higher affinity for NADPH than L-FNR I. When we assayed for NADPH-cytochrome c reductase activity using maize photosynthetic Fd (Fd I) and non-photosynthetic Fd (Fd III), the R-FNR showed a marked difference in affinity between these two Fd isoproteins; the K(m) for Fd III was 3.0 microM and that for Fd I was 29 microM. Consistent with this, the dissociation constant for the R-FNR:Fd III complex was 10-fold smaller than that of the R-FNR:Fd I complex. This differential binding capacity was confirmed by an affinity chromatography of R-FNR on Fd-sepharose with stronger binding to Fd III. L-FNR I showed no such differential interaction with Fd I and Fd III. These data demonstrated that R-FNR has the ability to discriminate between these two types of Fds. We propose that the stronger interaction of R-FNR with Fd III is crucial for an efficient electron flux of NADPH-FNR-Fd cascade, thus supporting Fd-dependent metabolism in non-photosynthetic organs.  相似文献   

3.
In higher plants there are two forms of ferredoxin NADP(+) oxidoreductase (FNR), a photosynthetic pFNR primarily required for the photoreduction of NADP(+), and a heterotrophic hFNR which generates reduced ferredoxin by utilizing electrons from NADPH produced during carbohydrate oxidation. The aim of this study was to investigate the presence of multiple forms of FNR in wheat leaves and the capacity of FNR isoforms to respond to changes in reductant demand through varied expression and N-terminal processing. Two forms of pFNR mRNA (pFNRI and pFNRII) were expressed in a similar pattern along the 12 cm developing primary wheat leaf, with the highest levels observed in plants grown continuously in the dark in the presence (pFNRI) or absence (pFNRII) of nitrate respectively. pFNR protein increased from the leaf base to tip. hFNR mRNA and protein was in the basal part of the leaf in plants grown in the presence of nitrate. FNR activity in plants grown in a light/dark cycle without nitrate was mainly due to pFNR, whilst hFNR contributed significantly in nitrate-fed plants. The potential role of distinct forms of FNR in meeting the changing metabolic capacity and reductant demands along the linear gradient of developing cells of the leaf are discussed. Furthermore, evidence for alternative N-terminal cleavage sites of pFNR acting as a means of discriminating between ferredoxins and the implications of this in providing a more effective flow of electrons through a particular pathway in vivo is considered.  相似文献   

4.
5.
In order to elucidate the importance of a ferredoxin (Fd) Arg-Glu pair involved in dynamic exchange from intra- to intermolecular salt bridges upon complex formation with ferredoxin-NADP(+) oxidoreductase (FNR), Equisetum arvense FdI and FdII were investigated as normal and the pair-lacking Fd, respectively. The FdI mutant lacking this pair was unstable and rapidly lost the [2Fe-2S] cluster. The catalytic constant (k(cat)) of the electron transfer for FdI is 5.5 times that for FdII and the introduction of this pair into FdII resulted in the increase of k(cat) to a level comparable to that for FdI, demonstrating directly that the Arg-Glu pair is important for efficient electron transfer between Fd and FNR.  相似文献   

6.
Stearoyl-acyl carrier protein desaturase (Delta9D) catalyzes the O(2) and 2e(-) dependent desaturation of stearoyl-acyl carrier protein (18:0-ACP) to yield oleoyl-ACP (18:1-ACP). The 2e(-) are provided by essential interactions with reduced plant-type [2Fe-2S] ferredoxin (Fd). We have investigated the protein-protein interface involved in the Fd-Delta9D complex by the use of chemical cross-linking, site-directed mutagenesis, steady-state kinetic approaches, and molecular docking studies. The treatment of the different proteins with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide revealed that carboxylate residues from Fd and lysine residues from Delta9D contribute to cross-linking. The single substitutions of K60A, K56A, and K230A on Delta9D decreased the k(cat)/K(M) for Fd by 4-, 22-, and 2400-fold, respectively, as compared to wt Delta9D and a K41A substitution. The double substitution K56A/K60A decreased the k(cat)/K(M) for Fd by 250-fold, whereas the triple mutation K56A/K60A/K230A decreased the k(cat)/K(M) for Fd by at least 700 000-fold. These results strongly implicate the triad of K56, K60, and K230 of Delta9D in the formation of a catalytic complex with Fd. Molecular docking studies indicate that electrostatic interactions between K56 and K60 and the carboxylate groups on Fd may situate the [2Fe-2S] cluster of Fd closer to W62, a surface residue that is structurally conserved in both ribonucleotide reductase and mycobacterial putative acyl-ACP desaturase DesA2. Owing to the considerably larger effects on catalysis, K230 appears to have other contributions to catalysis arising from its positioning in helix 7 and its close spatial location to the diiron center ligands E229 and H232. These results are considered in the light of the presently available models for Fd-mediated electron transfer in Delta9D and other protein-protein complexes.  相似文献   

7.
K Aoki  K Wada 《Plant physiology》1996,112(2):651-657
Five ferredoxin (Fd) isoproteins (FdA, FdB, FdC, FdD, and FdE) were isolated from tomato (Lycopersicon esculentum cv Momotaro) fruit. These isoproteins showed differential temporal and spatial accumulation patterns. FdA and FdC were present in leaves. FdE was present in roots, and FdB and FdD were fruit-specific. During fruit growth, the relative abundance of FdA decreased and that of FdE increased. The FdE/FdA ratio was higher in the inner tissues of the fruit than in the outer tissue, and it was correlated with starch accumulation. In darkgrown fruit the contents of FdA, FdB, and FdC, as well as chlorophyll, decreased remarkably relative to their light-grown counterparts; however, the contents of FdE and starch did not change significantly. Under in vitro conditions FdE showed higher cytochrome c reduction activity than FdA and FdB. These results, together with their N-terminal sequences, indicate that both photosynthetic- and heterotrophic-type Fd isoproteins are present in tomato fruit.  相似文献   

8.
9.
10.
Several forms (isoproteins) of ferredoxin in roots, leaves, and green and red pericarps in tomato plants (Lycopersicon esculentum Mill.) were earlier identified on the basis of N-terminal amino acid sequence and chromatographic behavior (Green et al. 1991). In the present study, a large scale preparation made possible determination of the full length amino acid sequence of the two ferredoxins from leaves. The ferredoxins characteristic of fruit and root were sequenced from the amino terminus to the 30th residue or beyond. The leaf ferredoxins were confirmed to be expressed in pericarp of both green and red fruit. The ferredoxins characteristic of fruit and root appeared to be restricted to those tissue. The results extend earlier findings in demonstrating that ferredoxin occurs in the major organs of the tomato plant where it appears to function irrespective of photosynthetic competence.Abbreviations CBB Coomassie brilliant blue R-250 - Cm Carboxymethylated - Fd Ferredoxin - FNR ferredoxin-NADP+ oxidoreductase - FPLC Fast protein liquid chromatography - HPLC High performance liquid chromatography - rt root  相似文献   

11.
Spinach (Spinacea oleracea) leaf ferredoxin (Fd)-dependent nitrite reductase was treated with either the arginine-modifying reagent phenyl-glyoxal or the lysine-modifying reagent pyridoxal-5'-phosphate under conditions where only the Fd-binding affinity of the enzyme was affected and where complex formation between Fd and the enzyme prevented the inhibition by either reagent. Modification with [14C]phenylglyoxal allowed the identification of two nitrite reductase arginines, R375 and R556, that are protected by Fd against labeling. Modification of nitrite reductase with pyridoxal-5'-phosphate, followed by reduction with NaBH4, allowed the identification of a lysine, K436, that is protected by Fd against labeling. Positive charges are present at these positions in all of the Fd-dependent nitrite reductase for which sequences are available, suggesting that these amino acids are directly involved in electrostatic binding of Fd to the enzyme.  相似文献   

12.
The selective action of the antibiotics chloramphenicol and cycloheximide on the synthesis of ferredoxin in liquid cultures of Chlamydomonas reinhardii was studied. Highly specific antibodies raised against Chlamydomonas ferredoxin were used to determine the in vivo synthesis of apoferredoxin and conversion into native protein. The results indicate that 80S ribosomes are involved in the synthesis. Chlamydomonas cells growing in the absence of iron did not synthesize immunologically detectable amounts of ferredoxin. We suggest that this is based upon feed-back inhibition of apoferredoxin synthesis at the translational level.Abbreviations CAP chloramphenicol - CHI cycloheximide - IgG Immunoglobulin G - PBS 140.4 mM NaCl. 9 mM Na2HPO4, 1.3 mM NaH2PO4 (pH 74) - SDS sodium dodecvl sulphate - Fd Ferredoxin - apoFd Apoferredoxin - CM-Fd Scarboxymethylated Fd - TCA-Fd Fd treated with trichloroacetic acid  相似文献   

13.
The effects of two molecular forms of water-soluble ferredoxin (Fd I and Fd II) on the kinetics of electron transport in bean chloroplasts (class B) were studied. The light-induced redox transitions of the photosystem I reaction center P700 were measured by the intensity of the EPR signal I produced by P700+. Both forms of ferredoxin, Fd I and Fd II, when added to the chloroplasts in catalytic amounts, stimulate the light-induced electron transfer from P700 to NADP+. Nevertheless, Fd I is a better mediator of the back reactions from NADPH to P700+. This electron transfer pathway is sensitive to the cyclic electron transport inhibitor, antimycin A, and to DCMU inhibitor of electron transport between photosystem II and plastoquinone. It may be concluded that the two molecular forms of ferredoxin, Fd I and Fd II, differ in their ability to catalyze cyclic electron transport in photosystem I. The role of Fd I and Fd II in regulation of electron transport at the acceptor site of photosystem I is discussed.  相似文献   

14.
PsaC is the stromal subunit of photosystem I (PSI) which binds the two terminal electron acceptors FA and FB. This subunit resembles 2[4Fe-4S] bacterial ferredoxins but contains two additional sequences: an internal loop and a C-terminal extension. To gain new insights into the function of the internal loop, we used an in vivo degenerate oligonucleotide-directed mutagenesis approach for analysing this region in the green alga Chlamydomonas reinhardtii. Analysis of several psaC mutants affected in PSI function or assembly revealed that K35 is a main interaction site between PsaC and ferredoxin (Fd) and that it plays a key role in the electrostatic interaction between Fd and PSI. This is based upon the observation that the mutations K35T, K35D and K35E drastically affect electron transfer from PSI to Fd, as measured by flash-absorption spectroscopy, whereas the K35R change has no effect on Fd reduction. Chemical cross-linking experiments show that Fd interacts not only with PsaD and PsaE, but also with the PsaC subunit of PSI. Replacement of K35 by T, D, E or R abolishes Fd cross-linking to PsaC, and cross-linking to PsaD and PsaE is reduced in the K35T, K35D and K35E mutants. In contrast, replacement of any other lysine of PsaC does not alter the cross-linking pattern, thus indicating that K35 is an interaction site between PsaC and its redox partner Fd.  相似文献   

15.
Ferredoxin and the flavoprotein, ferredoxin: NADP reductase, have been covalently linked by incubation in the presence of a water soluble carbodiimide. The cross-linking reaction yields an adduct having a 1:1 stoichiometry. The adduct has depressed levels of diaphorase and NADPH oxidase activity and is inactive in reduction of cytochrome c using NADPH as an electron donor. Thus, although similar to an adduct described by Zanetti and coworkers [J Biol Chem 259: 6153–6157 (1984)] in its stoichiometry, the adduct described herein has significantly different enzymatic properties. It is suggested that this may be a reflection of differences in the interaction between the two proteins resulting from differences in experimental conditions in which the two adducts were prepared.Abbreviations Fd ferredoxin - Fp ferredoxin: NADP reductase - Fd Fp covalently linked Fd-Fp adduct - Fd:Fp noncovalently linked complex between Fd and Fp - EDC 1-ethyl-3-(dimethylaminopropyl) carbodiimide - Tris tris-hydroxymethylaminomethane - MOPS 3-(N-morpholino)propane sulfonic acid - DCIP 2,6-dichloropenolindophenol  相似文献   

16.
Ferredoxin:NADP+ oxidoreductase (ferredoxin: NADP+ reductase, EC 1.18.1.2) was shown to form a ternary complex with its substrates ferredoxin (Fd) and NADP(H), but the ternary complex was less stable than the separate binary complexes. Kd for oxidized binary Fd-ferredoxin NADP+ reductase complex was less than 50 nM; Kd(Fd) increased with NADP+ concentration, approaching 0.5-0.6 microM when the flavoprotein was saturated with NADP+ K(NADP+) also increased from about 14 microM to about 310 microM, on addition of excess Fd. The changes in Kd were consistent with negative cooperativity between the associations of Fd and NADP+ and with our unpublished observations which suggest that product dissociation is rate-limiting in the reaction mechanism. Similar interference in binding was observed in more reduced states; NADPH released much ferredoxin:NADP+ reductase from Fd-Sepharose whether the proteins were initially oxidized or reduced. Complexation between Fd and ferredoxin: NADP+ reductase was found to shield each center from paramagnetic probes; charge specificity suggested that the active sites of Fd and ferredoxin:NADP+ reductase were, respectively, negatively and positively charged.  相似文献   

17.
Amino acid sequence of ferredoxin I from Desulfovibrio vulgaris Miyazaki   总被引:1,自引:0,他引:1  
The amino acid sequence of ferredoxin (Fd) I, purified from Desulfovibrio vulgaris Miyazaki, has been established. Fd I is strikingly similar to Fd III of D. africanus Benghazi with 84% homology. Both have the sequence, -Cys-x-x-Asp-x-x-Cys-x-x-x-Cys-Pro- in the N-terminal half, and the sequence, -Cys-x-x-Cys-x-x-Cys-x-x-x-Cys-Glu- in the C-terminal half of the molecule, instead of the common sequences for ligation to the usual [4Fe-4S] clusters. Fd I has 76% homology to Fd II of D. desulfuricans Norway.  相似文献   

18.
Reduced flavodoxin I (Fld1) is required in Escherichia coli for reductive radical generation in AdoMet-dependent radical enzymes and reductive activation of cobalamin-dependent methionine synthase. Ferredoxin (Fd) and flavodoxin II (Fld2) are also present, although their precise roles have not been ascertained. Ferredoxin (flavodoxin):NADP+ oxidoreductase (FNR) was discovered in E. coli as an NADPH-dependent reductant of Fld1 that facilitated generation of active methionine synthase in vitro; FNR and Fld1 will also supply electrons for the reductive cleavage of AdoMet essential for generating protein or substrate radicals in pyruvate formate-lyase, class III ribonucleotide reductase, biotin synthase, and, potentially, lipoyl synthase. As part of ongoing efforts to understand the various redox pathways that will support AdoMet-dependent radical enzymes in E. coli, we have examined the relative specificity of E. coli FNR for Fd, Fld1, and Fld2. While FNR will reduce all three proteins, Fd is the kinetically and thermodynamically preferred partner. Fd binds to FNR with high affinity (K(d)相似文献   

19.
Rapid reaction studies presented herein show that ferredoxin:NADP+ oxidoreductase (FNR, EC 1.18.1.2) catalyzes electron transfer from spinach ferredoxin (Fd) to NADP+ via a ternary complex, Fd X FNR X NADP+. In the absence of NADP+, reduction of ferredoxin:NADP+ reductase by Fd was much slower than the catalytic rate: 37-80 s-1 versus at least 445 e-s-1; dissociation of oxidized spinach ferredoxin (Fdox) from one-electron reduced ferredoxin:NADP+ reductase (FNRsq) limited the reduction of FNR. This confirms the steady-state kinetic analysis of Masaki et al. (Masaki, R., Yoshikaya, S., and Matsubara, H. (1982) Biochim. Biophys. Acta 700, 101-109). Occupation of the NADP+ binding site of FNR by NADP+ or by 2',5'-ADP (a nonreducible NADP+ analogue) greatly increased the rate of electron transfer from Fd to FNR, releiving inhibition by Fdox. NADP+ (and 2',5'-ADP) probably facilitate the dissociation of Fdox; equilibrium studies have shown that nucleotide binding decreases the association of Fd with FNR (Batie, C. J. (1983) Ph.D. dissertation, Duke University; Batie, C. J., and Kamin, H. (1982) in Flavins and Flavoproteins VII (Massey, V., and Williams, C. H., Jr., eds) pp. 679-683, Elsevier, New York; Batie, C.J., and Kamin, H. (1982) Fed. Proc. 41, 888; and Batie, C.J., and Kamin, H. (1984) J. Biol. Chem. 259, 8832-8839). Premixing Fd with FNR was found to inhibit the reaction of the flavoprotein with NADP+ and with NADPH; thus, substrate binding may be ordered, NADP+ first, then Fd. FNRred and NADP+ very rapidly formed an FNRred X NADP+ complex with flavin to nicotinamide charge transfer bands. The Fdred X NADP+ complex then relaxed to an equilibrium species; the spectrum indicated a predominance of FNRox X NADPH charge-transfer complex. However, charge-transfer species were not observed during turnover; thus, their participation in catalysis of electron transfer from Fd to NADP+ remains uncertain. The catalytic rate of Fd to NADP+ electron transfer, as well as the rates of electron transfer from Fd to FNR, and from FNR to NADP+ were decreased when the reactants were in D2O; diaphorase activity was unaffected by solvent. On the basis of the data presented, a scheme for the catalytic mechanism of catalysis by FNR is presented.  相似文献   

20.
Some causative factors resulting in the appearance of two components of ferredoxin (Fd) isolated from the pea leaves preparations have been studied by 15% PAG electrophoresis. It has been shown that the composition of the buffer systems (tris-glycine buffer, pH 8,3; veronal buffer, pH 7.0) does not cause Fd separation into two components. Study of the effects of the modifying agents on the active centre and apoprotein of Fd. Showed that the destruction of the active centre does not affect Fd separation and modification of the Fd protein part results in greater amount of the bands on the electrophoregrams. It has been concluded that heterogeneity of Fd is possibly of the genetic nature. The following facts can be regarded as an evidence for existence of both forms of Fd in pea leaves: occurrence of two forms of Fd in chloroplasts isolated in organic media, differing in Fd content during pea ontogenesis and upon varying illumination conditions during their growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号