首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The Arabidopsis gene encoding the key flavonoid biosynthesis enzyme chalcone synthase (CHS) is regulated by several environmental and endogenous stimuli. Here we dissect the network of light signalling pathways that control CHS expression in mature leaves using cryptochrome (cry) and phytochrome (phy) deficient mutants. The UV-A/blue light induction of CHS is mediated principally by cry1, but neither cry1 nor cry2 is involved in UV-B induction or in the UV-A and blue light signalling pathways that interact synergistically with the UV-B pathway to enhance CHS expression. Moreover, these synergistic responses do not require phyA or phyB. Phytochrome is a positive regulator of the cry1 inductive pathway, mediating distinct potentiation and coaction effects. A red light pretreatment enhances subsequent cry1-mediated CHS induction. This potentiation is unaltered in phyA and phyB mutants but much reduced in a phyA phyB double mutant, indicating that it requires principally phyA or phyB. In contrast, the cry1-mediated induction of CHS, without pretreatment, is much reduced in phyB but not phyA mutants, indicating coaction between cry1 and phyB. Further experiments with phy-deficient mutants demonstrate that phyB is a negative regulator of the UV-B inductive pathway. We further show that phyB acts upstream of the points of interaction of the UV-A and blue synergism pathways with the UV-B pathway. We propose that phyB functions to balance flux through the cry1 and UV-B signalling pathways.  相似文献   

7.
Plants experience temperature fluctuations during the course of the daily cycle, and although stem growth responds rapidly to these changes we largely ignore whether there is a short-term memory of previous conditions. Here we show that nighttime temperatures affect the growth of the hypocotyl of Arabidopsis thaliana seedlings not only during the night but also during the subsequent photoperiod. Active phytochrome B (phyB) represses nighttime growth and warm temperatures reduce active phyB via thermal reversion. The function of PHOTOPERIODIC CONTROL OF HYPOCOTYL1 (PCH1) is to stabilise active phyB in nuclear bodies but, surprisingly, warmth reduces PCH1 gene expression and PCH1 stability. When phyB was active at the beginning of the night, warm night temperatures enhanced the levels of nuclear phyB and reduced hypocotyl growth rate during the following day. However, when end-of-day far-red light minimised phyB activity, warm night temperatures reduced the levels of nuclear phyB and enhanced the hypocotyl growth rate during the following day. This complex growth pattern was absent in the phyB mutant. We propose that temperature-induced changes in the levels of PCH1 and in the size of the physiologically relevant nuclear pool of phyB amplify the impact of phyB-mediated temperature sensing.  相似文献   

8.
9.
10.
Plants are capable of coordination of their growth and development with ambient temperatures. EARLY FLOWERING3 (ELF3), an essential component of the plant circadian clock, is also involved in ambient temperature sensing, as well as in inhibiting the expression and protein activity of the thermoresponsive regulator phytochrome interacting factor 4 (PIF4). The ELF3 activity is subjected to attenuation in response to warm temperature; however, how the protein level of ELF3 is regulated at warm temperature remains less understood. Here, we report that the E3 ligase XB3 ORTHOLOG 5 IN ARABIDOPSIS THALIANA, XBAT35, mediates ELF3 degradation. XBAT35 interacts with ELF3 and ubiquitinates ELF3. Loss-of-function mutation of XBAT35 increases the protein level of ELF3 and confers a short-hypocotyl phenotype under warm temperature conditions. Thus, our findings establish that XBAT35 mediates ELF3 degradation to lift the inhibition of ELF3 on PIF4 for promoting thermoresponsive hypocotyl growth in plants.  相似文献   

11.
12.
13.
14.
Single, double, and triple null combinations of Arabidopsis mutants lacking the photoreceptors phytochrome (phy) A (phyA-201), phyB (phyB-5), and cryptochrome (cry) 1 (hy4-2.23n) were examined for de-etiolation responses in high-fluence red, far-red, blue, and broad-spectrum white light. Cotyledon unhooking, unfolding, and expansion, hypocotyl growth, and the accumulation of chlorophylls and anthocyanin in 5-d-old seedlings were measured under each light condition and in the dark. phyA was the major photoreceptor/effector for most far-red-light responses, although phyB and cry1 modulated anthocyanin accumulation in a phyA-dependent manner. phyB was the major photoreceptor in red light, although cry1 acted as a phyA/phyB-dependent modulator of chlorophyll accumulation under these conditions. All three photoreceptors contributed to most blue light deetiolation responses, either redundantly or additively; however, phyB acted as a modulator of cotyledon expansion dependent on the presence of cry1. As reported previously, flowering time in long days was promoted by phyA and inhibited by phyB, with each suppressing the other's effect. In addition to the effector/modulator relationships described above, measurements of hypocotyls from blue-light-grown seedlings demonstrated phytochrome activity in blue light and cry1 activity in a phyAphyB mutant background.  相似文献   

15.
16.
17.
Cryptochromes (crys) are photolyase-like blue-light receptors first discovered in Arabidopsis thaliana and later identified in all major evolutionary lineages. Crys are involved in not only blue light responses but also in temperature responses; however, whether and how cry protein stability is regulated by temperature remains unknown. Here, we show that cry2 protein abundance is modulated by ambient temperature and cry2 protein is degraded under low ambient temperature via the 26S proteasome. Consistent with this, cry2 shows high levels of ubiquitination under low ambient temperatures. Interestingly, cry2 degradation at low ambient temperatures occurs only under blue light and not under red light or dark conditions, indicating blue-light-dependent degradation of cry2 at low ambient temperature. Furthermore, low ambient temperature promotes physical interaction of Light-Response Bric-a-Brack/Tramtrack/Broad (LRB) proteins with cry2 to modulate its ubiquitination and protein stability in response to ambient temperature. LRBs promote high-temperature-induced hypocotyl elongation by modulating the protein stability of cry2 protein. These results indicate that cry2 accumulation is regulated by not only blue light but also ambient temperature, and LRBs are responsible for cry2 degradation at low ambient temperature. The stabilization of cry2 by high temperature makes cry2 a better negative regulator of temperature responses.

CRY2 protein accumulation is modulated by ambient temperature and LRBs are responsible for the ubiquitination and degradation of CRY2 at low ambient temperature.  相似文献   

18.
Wild-type or phyA, phyB, or hy4 mutant Arabidopsis seedlings lacking phytochrome A (phyA), phytochrome B (phyB), or cryptochrome 1 (cry1), respectively, and the double and triple mutants were used in combination with blue-light treatments given simultaneously with red or far-red light. We investigated the interaction between phytochromes and cry1 in the control of hypocotyl growth and cotyledon unfolding. Under conditions deficient for cry1 (short exposures to blue light) or phyB (far-red background), these photoreceptors acted synergistically: Under short exposures to blue light (3 h/d) added to a red-light background, cry1 activity required phyB (e.g. the hy4 mutant was taller than the wild type but the phyBhy4 mutant was not taller than the phyB mutant). Under prolonged exposures to blue light (24 h/d) added to a far-red light background, phyB activity required cry1 (e.g. the phyAphyB mutant was taller than the phyA mutant but the phyAphyBhy4 mutant was not taller than the phyAhy4 mutant). Under more favorable light inputs, i.e. prolonged exposures to blue light added to a red-light background, the effects of cry1 and phyB were independent. Thus, the synergism between phyB and cry1 is conditional. The effect of cry1 was not reduced by the phyA mutation under any tested light condition. Under continuous blue light the triple mutant phyAphyBhy4 showed reduced hypocotyl growth inhibition and cotyledon unfolding compared with the phyAphyB mutant. The action of cry1 in the phyAphyB double mutant was higher under the red-light than the far-red-light background, indicating a synergistic interaction between cry1 and phytochromes C, D, or E; however, a residual action of cry1 independent of any phytochrome is likely to occur.  相似文献   

19.
Phytochrome Interacting Factor 1 (PIF1), a basic helix-loop-helix (bHLH) protein, functions as a negative regulator of various facets of photomorphogenesis. To indentify PIF1-interacting proteins, we performed yeast two-hybrid screening using PIF1 as a bait and identified a group of proteins including PIF1 itself, PIF3 and long hypocotyl in far-red 1 (HFR1), an atypical HLH protein. Directed yeast two-hybrid interaction assays showed that PIF1 can form heterodimers with all other PIFs as well as with HFR1. PIF1 and PIF3 interacted with each other in both in vitro and in vivo co-immunoprecipitation assays. PIF1-PIF3 heterodimer also bound to a G-box DNA sequence element in vitro. To understand the biological significance of these interactions, a pif1pif3 double mutant was obtained and characterized. Analyses of the single and double mutants showed that PIF3 plays a prominent role in repressing photomorphogenesis under continuous blue light conditions. pif1 and pif3 showed additive phenotypes more prominently under discontinuous blue light conditions. Similar to PIF1, PIF3 was also rapidly phosphorylated, poly-ubiquitylated and degraded in response to blue light. PIF3 also interacted with phytochromes in response to blue light. A PIF3 mutant defective in interaction with both phyA and phyB displayed reduced degradation under blue light, suggesting that phy-interaction was necessary for the blue light-induced degradation of PIF3. Taken together, these data suggest a combinatorial control of photomorphogenesis by bHLH proteins in response to light in Arabidopsis.  相似文献   

20.
We show that a previously uncharacterized Arabidopsis thaliana basic helix-loop-helix (bHLH) phytochrome interacting factor (PIF), designated PIF7, interacts specifically with the far-red light-absorbing Pfr form of phyB through a conserved domain called the active phyB binding motif. Similar to PIF3, upon light exposure, PIF7 rapidly migrates to intranuclear speckles, where it colocalizes with phyB. However, in striking contrast to PIF3, this process is not accompanied by detectable light-induced phosphorylation or degradation of PIF7, suggesting that the consequences of interaction with photoactivated phyB may differ among PIFs. Nevertheless, PIF7 acts similarly to PIF3 in prolonged red light as a weak negative regulator of phyB-mediated seedling deetiolation. Examination of pif3, pif4, and pif7 double mutant combinations shows that their moderate hypersensitivity to extended red light is additive. We provide evidence that the mechanism by which these PIFs operate on the phyB signaling pathway under prolonged red light is through maintaining low phyB protein levels, in an additive or synergistic manner, via a process likely involving the proteasome pathway. These data suggest that the role of these phyB-interacting bHLH factors in modulating seedling deetiolation in prolonged red light may not be as phy-activated signaling intermediates, as proposed previously, but as direct modulators of the abundance of the photoreceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号