首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsatellites are robust markers for genome mapping, gene tagging and marker assisted selection. The genus Brassica, having a large and complex genome, requires such type of markers for various applications in genetics and breeding. A set of 202 microsatellite markers were used to screen two parental genotypes of Indian mustard (Brassica juncea) namely, ‘Varuna’, an indigenous cultivar and BEC144, an exotic collection from Poland, of which 36 (17.8%) were informative and usable for segregation analysis. The polymorphic markers detected heterozygosity in advanced generation recombinant inbred lines (RILs) developed earlier from the cross Varuna × BEC144 with a varying frequency that ranged from 0% to 23.5%. Normal Mendelian segregation for majority of microsatellite markers was observed. Eleven markers showed significant deviation from the expected 1:1 segregation ratio. Twelve markers were assigned to six different linkage groups of Indian mustard genome map. The level of polymorphism between the parents and the percentage of useful informative markers as observed in this study, suggested that many more markers are needed to achieve a reasonable coverage of mustard genome. This is the first report on the evaluation of microsatellite markers for genome mapping in B. juncea.  相似文献   

2.
Triticale (X Triticosecale Wittm.) is a hybrid derived by crossing wheat (Triticum sp.) and rye (Secale sp.). Till date, only a limited number of simple sequence repeat (SSRs) markers have been used in triticale molecular analyses and there is a need to identify dedicated high-throughput molecular markers to better exploit this crop. The objective of this study was to develop and evaluate diversity arrays technology (DArT) markers in triticale. DArT marker technology offers a high level of multiplexing. Development of new markers from triticale accessions was combined with mining the large collection of previously developed markers in rye and wheat. Three genotyping arrays were used to analyze a collection of 144 triticale accessions. The polymorphism level ranged from 8.6 to 23.8% for wheat and rye DArT markers, respectively. Among the polymorphic markers, rye markers were the most abundant (3,109) followed by wheat (2,214) and triticale (719). The mean polymorphism information content values were 0.34 for rye DArT markers and 0.37 for those from triticale and wheat. High correlation was observed between similarity matrices derived from rye, triticale, wheat and combined marker sets, as well as for the cophenetic values matrices. Cluster analysis revealed genetic relationships among the accessions consistent with the agronomic and pedigree information available. The newly developed triticale DArT markers as well as those originated from rye and wheat provide high quality markers that can be used for diversity analyses and might be exploited in a range of molecular breeding and genomics applications in triticale.  相似文献   

3.
Bacterial source tracking is used to apportion fecal pollution among putative sources. Within this context, library-independent markers are genetic or phenotypic traits that can be used to identify the host origin without a need for library-dependent classification functions. The objective of this project was to use mixed-genome Enterococcus microarrays to identify library-independent markers. Separate shotgun libraries were prepared for five host groups (cow, dog, elk/deer, human, and waterfowl), using genomic DNAs (gDNAs) from ca. 50 Enterococcus isolates for each library. Microarrays were constructed (864 probes per library), and 385 comparative genomic hybridizations were used to identify putative markers. PCR assays were used to screen 95 markers against gDNAs from isolates from known sources collected throughout the United States. This validation process narrowed the selection to 15 markers, with 7 having no recognized homologues and the remaining markers being related to genes involved in metabolic pathways and DNA replication. In most cases, each marker was exclusive to one of four Enterococcus species (Enterococcus casseliflavus, E. faecalis, E. hirae, or E. mundtii). Eight markers were highly specific to either cattle, humans, or elk/deer, while the remaining seven markers were positive for various combinations of hosts other than humans. Based on microarray hybridization data, the prevalence of host-specific markers ranged from 2% to 45% of isolates collected from their respective hosts. A 20-fold difference in prevalence could present challenges for the interpretation of library-independent markers.  相似文献   

4.
 A barley lambda-phage library was screened with (GA)n and (GT)n probes for developing microsatellite markers. The number of repeats ranged from 2 to 58 for GA and from 2 to 24 for GT. Fifteen selected microsatellite markers were highly polymorphic for barley. These microsatellite markers were used to estimate the genetic diversity among 163 barley genotypes chosen from the collection of the IPK Genebank, Germany. A total of 130 alleles were detected by 15 barley microsatellite markers. The number of alleles per microsatellite marker varied from 5 to 15. On average 8.6 alleles per locus were observed. Except for GMS004 all other barley microsatellite markers showed on average a high value of gene diversity ranging from 0.64 to 0.88. The mean value of gene diversity in the wild forms and landraces was 0.74, and even among the cultivars the gene diversity ranged from 0.30 to 0.86 with a mean of 0.72. No significant differences in polymorphism were detected by the GA and GT microsatellite markers. The estimated genetic distances revealed by the microsatellite markers were, on average , 0.75 for the wild forms, 0.72 for landraces and 0.70 among cultivars. The microsatellite markers were able to distinguish between different barley genotypes. The high degree of polymorphisms of microsatellite markers allows a rapid and efficient identification of barley genotypes. Received: 26 November 1997 / Accepted: 19 January 1998  相似文献   

5.
6.
The use of DNA markers to evaluate genetic diversity is an important component of the management of animal genetic resources. The Food and Agriculture Organisation of the United Nations (FAO) has published a list of recommended microsatellite markers for such studies; however, other markers are potential alternatives. This paper describes results obtained with a set of amplified fragment length polymorphism (AFLP) markers as part of a genetic diversity study of European pig breeds that also utilized microsatellite markers. Data from 148 AFLP markers genotyped across samples from 58 European and one Chinese breed were analysed. The results were compared with previous analyses of data from 50 microsatellite markers genotyped on the same animals. The AFLP markers had an average within-breed heterozygosity of 0.124 but there was wide variation, with individual markers being monomorphic in 3-98% of the populations. The biallelic and dominant nature of AFLP markers creates a challenge for their use in genetic diversity studies as each individual marker contains limited information and AFLPs only provide indirect estimates of the allelic frequencies that are needed to estimate genetic distances. Nonetheless, AFLP marker-based characterization of genetic distances was consistent with expectations based on breed and regional distributions and produced a similar pattern to that obtained with microsatellites. Thus, data from AFLP markers can be combined with microsatellite data for measuring genetic diversity.  相似文献   

7.
Jeong HJ  Jo YD  Park SW  Kang BC 《Génome》2010,53(12):1029-1040
Single nucleotide polymorphisms (SNPs) derived from both nuclear and cytoplasmic DNA sequences were developed to identify distinct species of Capsicum. Species identification was achieved by detecting allelic variations of these type of markers via high resolution melting analysis (HRM). We used the HRM polymorphisms of COSII markers and the Waxy gene from the nuclear sequence, in addition to the intergenic spacer between trnL and trnF from cytoplasmic DNA as our SNP markers. A total of 31 accessions of Capsicum, representing six species, were analyzed using this method. As single markers were insufficient for identifying Capsicum species, combinations of all markers unambiguously identified all six. A phylogeny based on the SNP markers was consistent with the current taxonomy of Capsicum species. These observations demonstrate that the markers developed in this study are useful for rapid identification of new germplasm for management of Capsicum species.  相似文献   

8.
Microsatellite or single sequence repeat (SSR) markers have been commonly used in genetic research in many crop species, including common bean (Phaseolus vulgaris L.). A limited number of existing SSR markers have been designed from high-throughput sequencing of the genome, warranting the exploitation of new SSR markers from genomic regions. In this paper, we sequenced total DNA from the genotype Hong Yundou with a 454-FLX pyrosequencer and found numerous SSR loci. Based on these, a large number of SSR markers were developed and 90 genomic-SSR markers with clear bands were tested for mapping and diversity detection. The new SSR markers proved to be highly polymorphic for molecular polymorphism, with an average polymorphism information content value of 0.44 in 131 Chinese genotypes and breeding lines, effective for distinguishing Andean and Mesoamerican genotypes. In addition, we integrated 85 primers of the 90 polymorphism markers into the bean map using an F2 segregating population derived from Hong Yundou crossed with Jingdou. The distribution of SSR markers among 11 chromosomes was not random and tended to cluster on the linkage map, with 14 new markers mapped on chromosome Pv01, whereas only four loci were located on chromosome Pv04. Overall, these new markers have potential for genetic mapping, genetic diversity studies and map-based cloning in common bean.  相似文献   

9.
We developed nine new microsatellite markers for rice blast (Magnaporthe grisea) population studies. These markers were used in addition to nine microsatellite markers previously developed by our group for mapping purpose. Altogether, the 18 markers were used in multiplex PCR (polymerase chain reaction) to characterize six populations from different geographical origins. The average number of alleles per locus across populations ranged from 1.2 to 7 and the total number of alleles detected from 2 to 19. Based on this large range of polymorphism, this set of markers is expected to be useful for different kind of population studies at different geographical scales.  相似文献   

10.
The construction of high-density linkage maps for use in identifying loci underlying important traits requires the development of large numbers of polymorphic genetic markers spanning the entire genome at regularly spaced intervals. As part of our efforts to develop markers for rainbow trout (Oncorhynchus mykiss), we performed a comparison of allelic variation between microsatellite markers developed from expressed sequence tag (EST) data and anonymous markers identified from repeat-enriched libraries constructed from genomic DNA. A subset of 70 markers (37 from EST databases and 33 from repeat enriched libraries) was characterized with respect to polymorphism information content (PIC), number of alleles, repeat number, locus duplication within the genome and ability to amplify in other salmonid species. Higher PIC was detected in dinucleotide microsatellites derived from ESTs than anonymous markers (72.7% vs. 54.0%). In contrast, dinucleotide repeat numbers were higher for anonymous microsatellites than for EST derived microsatellites (27.4 vs.18.1). A higher rate of cross-species amplification was observed for EST microsatellites. Approximately half of each marker type was duplicated within the genome. Unlike single-copy markers, amplification of duplicated microsatellites in other salmonids was not correlated to phylogenetic distance. Genomic microsatellites proved more useful than EST derived microsatellites in discriminating among the salmonids. In total, 428 microsatellite markers were developed in this study for mapping and population genetic studies in rainbow trout.  相似文献   

11.
ABSTRACT: BACKGROUND: Ancestry informative markers (AIMs) are a type of genetic marker that is informative for tracing the ancestral ethnicity of individuals. Application of AIMs has gained substantial attention in population genetics, forensic sciences, and medical genetics. Single nucleotide polymorphisms (SNPs), the materials of AIMs, are useful for classifying individuals from distinct continental origins but cannot discriminate individuals with subtle genetic differences from closely related ancestral lineages. Proof-of-principle studies have shown that gene expression (GE) also is a heritable human variation that exhibits differential intensity distributions among ethnic groups. GE supplies ethnic information supplemental to SNPs; this motivated us to integrate SNP and GE markers to construct AIM panels with a reduced number of required markers and provide high accuracy in ancestry inference. Few studies in the literature have considered GE in this aspect, and none have integrated SNP and GE markers to aid classification of samples from closely related ethnic populations. RESULTS: We integrated a forward variable selection procedure into flexible discriminant analysis to identify key SNP and/or GE markers with the highest cross-validation prediction accuracy. By analyzing genome-wide SNP and/or GE markers in 210 independent samples from four ethnic groups in the HapMap II Project, we found that average testing accuracies for a majority of classification analyses were quite high, except for SNP-only analyses that were performed to discern study samples containing individuals from two close Asian populations. The average testing accuracies ranged from 0.53 to 0.79 for SNP-only analyses and increased to around 0.90 when GE markers were integrated together with SNP markers for the classification of samples from closely related Asian populations. Compared to GE-only analyses, integrative analyses of SNP and GE markers showed comparable testing accuracies and a reduced number of selected markers in AIM panels. CONCLUSIONS: Integrative analysis of SNP and GE markers provides high-accuracy and/or cost-effective classification results for assigning samples from closely related or distantly related ancestral lineages to their original ancestral populations. User-friendly BIASLESS (Biomarkers Identification and Samples Subdivision) software was developed as an efficient tool for selecting key SNP and/or GE markers and then building models for sample subdivision. BIASLESS was programmed in R and R-GUI and is available online at http://www.stat.sinica.edu.tw/hsinchou/genetics/prediction/BIASLESS.htm.  相似文献   

12.
In order to assess the applicability of bovine microsatellite markers for population genetic studies in Swiss yak, 131 bovine microsatellite markers were tested on a panel of 10 animals. Efficient amplification was observed for 124 markers (94.6%) with a total of 476 alleles, of which 117 markers (94.3%) were polymorphic. The number of alleles per locus among the polymorphic markers ranged from two to nine. Seven loci (ILSTS005, BMS424B, BMS1825, BMS672, BM1314, ETH123 and BM6017) failed to amplify yak genomic DNA. Two cattle Y-chromosome specific microsatellite markers (INRA126 and BM861) amplified genomic DNA from both male and female yaks. However, two additional markers on cattle Y-chromosome (INRA124 and INRA189) amplified DNA from only males. Of the polymorphic markers, 24 microsatellites proposed by CaDBase for within- and cross-species comparisons and two additional highly polymorphic markers (MHCII and TGLA73) were used to investigate the genetic variability and the population structure of a Swiss yak herd that included 51 additional animals. The polymorphic information content ranged from 0.355 to 0.752, while observed heterozygosity (HO) ranged from 0.348 to 0.823. Furthermore, a set of 13 markers, organized into three multiplex polymerase chain reactions, was evaluated for routine parentage testing. This set provided an exclusion probability in a family of four yaks (both parents and two offspring) of 0.995. These microsatellites serve as useful tools for genetic characterization of the yak, which continues to be an important domestic livestock species.  相似文献   

13.
This study presents a framework linkage map based on microsatellite markers for Muscadinia rotundifolia (1n?=?20). The mapping population consisted of 206 progeny generated from a cross of two M. rotundifolia varieties, 'Fry' and 'Trayshed'. A total of 884 primers were tested for their ability to amplify markers: 686 amplified and 312 simple sequence repeat (SSR) primer pairs generated 322 polymorphic markers for either one or both parents. The map for the female parent 'Fry' consisted of 212 markers and covered 879?cM on 18 chromosomes. The average distance between the markers was 4.1?cM and chromosome 6 was not represented due to a lack of polymorphic markers. The map for the male parent 'Trayshed' consisted of 191 markers and covered 841?cM on 19 chromosomes. The consensus map consisted of 314 markers on 19 chromosomes with a total distance of 1,088?cM, which represented 66?% of the distance covered by the Vitis vinifera reference linkage map. Marker density varied greatly among chromosomes from 5 to 35 mapped markers. Relatively good synteny was observed across 19 chromosomes based on markers in common with the V. vinifera reference map. Extreme segregation distortion was observed for chromosome 8 and 14 on the female parent map, and 4 on the male parent map. The lack of mapping coverage for the 20th M. rotundifolia chromosome is discussed in relation to possible evolutionary events that led to the reduction in chromosome number from 21 to 19 in the ancestral genome.  相似文献   

14.
Many methods have been developed to assay for single nucleotide polymorphisms (SNPs), but generally these depend on access to specialised equipment. Allele-specific polymerase chain reaction (AS-PCR) is a method that does not require specialised equipment (other than a thermocycler), but there is a common perception that AS-PCR markers can be unreliable. We have utilised a three primer AS-PCR method comprising of two flanking-primers combined with an internal allele-specific primer. We show here that this method produces a high proportion of robust markers (from candidate allele specific primers). Forty-nine inter-varietal SNP sites in 31 barley (Hordeum vulgare L.) genes were targeted for the development of AS-PCR assays. The SNP sites were found by aligning barley expressed sequence tags from public databases. The targeted genes correspond to cDNAs that have been used as restriction fragment length polymorphic probes for linkage mapping in barley. Two approaches were adopted in developing the markers. In the first approach, designed to maximise the successful development of markers to a SNP site, markers were developed for 18 sites from 19 targeted (95% success rate). With the second approach, designed to maximise the number of markers developed per primer synthesised, markers were developed for 18 SNP sites from 30 that were targeted (a 60% success rate). The robustness of markers was assessed from the range of annealing temperatures over which the PCR assay was allele-specific. The results indicate that this form of AS-PCR is highly successful for the development of robust SNP markers. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
The first five microsatellite markers for the ide, Leuciscus idus, and four microsatellite markers for the Siberian roach, Rutilus rutilus, were designed. Cross‐amplification of ide markers was examined in Siberian roach and vice versa. The number of alleles per locus ranged from three to 13 in ide and from two to eight in roach. The expected heterozygosity ranged from 0.313 to 0.909 in ide and from 0.119 to 0.775 in roach. These markers could be used to evaluate the genetic population structure of these species and other fish from the Cyprinidae family.  相似文献   

16.
Genetic maps are the primary resources for genetic study. Genetic map construction was quite difficult in the past decade for lack of polymorphic markers. This situation has been changed since the development of microsatellite markers or simple sequence length polymorphisms (SSLPs) because they are abundant and more polymorphic. Here we report the construction of an integrated genetic map of the rat derived from two F2 intercrosses. A map of 376 markers from 160 (OLETF × F344)F2 progenies and a map of 333 markers from 71 (F344 × LEC)F2 animals are integrated by use of common set of 120 anchor markers chosen to be spaced at an average of 15 cM in the genome. The resulting integrated map with 194 newly developed rat markers from WIBR/MIT CGR, 269 Mit/Mgh markers, 94 Wox markers, and 5 markers of various origins covers the majority of 21 chromosomes of the rat with a total genetic distance of 1797 cM and an average marker spacing of 3.2 cM. The current map provides detailed information for markers from different sources and, therefore, should be helpful to the research community. Received: 6 May 1998 / Accepted: 24 August 1998  相似文献   

17.
古瑜  赵前程  孙德岭  宋文芹 《遗传》2007,29(6):751-757
利用AFLP和NBS profiling技术, 以花椰菜自交系“AD白花”与高代自交不亲和系“C-8”杂交得到的F1代自交产生的F2代分离群体为材料, 构建了第一个花椰菜遗传连锁图谱。该图谱由234个AFLP标记和21个NBS标记构成了9个连锁群, 总图距为668.4 cM, 标记间平均距离为2.9 cM。每个连锁群包含的位点数从12到47个, 相邻两标记之间的距离范围是0~14.9 cM。NBS标记分布在8个连锁群中, 这些标记大部分聚在一起。本研究为今后的基因定位及重要农艺性状的分析提供框架图。此外, 研究NBS profiling 方法在花椰菜中的稳定性和有效性以及NBS-LRR类RGA在花椰菜基因组中的分布和特点。  相似文献   

18.
Some species of the genus Ochradenus are difficult to identify based on morphological markers. Similar limitations are found for biochemical markers. We developed genetic markers based on DNA sequences for Ochradenus arabicus, which is an endemic plant to Saudi Arabia, locally utilized as a medicinal shrub. The internal transcribed spacer sequence of nuclear ribosomal DNA and chloroplast (rpoB and rpoC1) markers were more informative than other chloroplast DNA markers. Based on these markers, we were able to discriminate this species from another species of the same genus (O. baccatus) that is widely distributed in Saudi Arabia, despite a high degree of morphological similarity. These genetic markers facilitate its identification, even when acquired in a dried state from local markets.  相似文献   

19.
Randomly amplified polymorphic DNA (RAPD) markers were used to assign individual adult sockeye salmon to their spawning sites using a genotype assignment test. Six primers were selected for use by screening bulked DNA samples for markers missing in fish from one or more of 5 sites in British Columbia or Alaska. Of 73 markers scored, 54 showed variation between or within sites among the sampled fish. Thirty-seven of the variable markers were not detected in any fish from one or more sites; 18 variable markers were detected in all fish from one or more other sites. Thus 25% of markers scored were found in all fish of some sites and in no fish of some other sites. An assignment test placed all 70 fish tested into their correct populations. Principal coordinate analysis of genetic variation produced clusters of fish corresponding to each sampling site. No sex-specific RAPD markers were detected among more than 1300 screened.  相似文献   

20.
Due to their long reproductive cycles and the time to expression of mature traits, marker-assisted selection is particularly attractive for tree breeding. In this review, we discuss different approaches used for developing markers and propose a method for application of markers in low linkage disequilibrium (LD) populations. Identification of useful markers for application in tree breeding is mainly based on two approaches, quantitative trait locus (QTL) mapping and association genetic studies. While several studies have identified significant markers, effect of the individual markers is low making it difficult to utilize them in breeding programs. Recently, genomic selection (GS) was proposed for overcoming some of these difficulties. In GS, high density markers are used for predicting phenotypes from genotypes. Currently small effective populations with high LD are being tested for GS in tree breeding. For wider application, GS needs to be applied in low LD populations which are found in many tree breeding programs. Here we propose an approach in which the significant markers from association studies may be used for developing prediction models in low LD populations using the same methods as in GS. Preliminary analyses indicate that a modest numbers of markers may be sufficient for developing prediction models in low LD populations. GS based on large numbers of random markers or small numbers of associated markers is poised to make marker-assisted selection a reality in forest tree breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号