首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycomics-an integrated approach to study structure-function relationships of complex carbohydrates (or glycans)-is an emerging field in this age of post-genomics. Realizing the importance of glycomics, many large scale research initiatives have been established to generate novel resources and technologies to advance glycomics. These initiatives are generating and cataloging diverse data sets necessitating the development of bioinformatic platforms to acquire, integrate, and disseminate these data sets in a meaningful fashion. With the consortium for functional glycomics (CFG) as the model system, this review discusses databases and the bioinformatics platform developed by this consortium to advance glycomics.  相似文献   

2.
3.
4.
5.
Information contained in the mammalian glycome is decoded by glycan-binding proteins (GBPs) that mediate diverse functions including host-pathogen interactions, cell trafficking and transmembrane signaling. Although information on the biological roles of GBPs is rapidly expanding, challenges remain in identifying the glycan ligands and their impact on GBP function. Protein-glycan interactions are typically low affinity, requiring multivalent interactions to achieve a biological effect. Though many glycoproteins can carry the glycan structure recognized by the GBP, other factors, such as recognition of protein epitopes and microdomain localization, may restrict which glycoproteins are functional ligands in situ. Recent advances in development of glycan arrays, synthesis of multivalent glycan ligands, bioengineering of cell-surface glycans and glycomics databases are providing new tools to identify the ligands of GBPs and to elucidate the mechanisms by which they participate in GBP function.  相似文献   

6.
Discovering new genes with advanced homology detection   总被引:2,自引:0,他引:2  
  相似文献   

7.
There is an increased need for new drug leads to treat diseases in humans, animals and plants. A dramatic example is represented by the need for novel and more effective antibiotics to combat multidrug-resistant microbial pathogens. Natural products represent a major source of approved drugs and still play an important role in supplying chemical diversity, despite a decreased interest by large pharmaceutical companies. Novel approaches must be implemented to decrease the chances of rediscovering the tens of thousands of known natural products. In this review, we present an overview of natural product screening, focusing particularly on microbial products. Different approaches can be implemented to increase the probability of finding new bioactive molecules. We thus present the rationale and selected examples of the use of hypersensitive assays; of accessing unexplored microorganisms, including the metagenome; and of genome mining. We then focus our attention on the technology platform that we are currently using, consisting of approximately 70 000 microbial strains, mostly actinomycetes and filamentous fungi, and discuss about high-quality screening in the search for bioactive molecules. Finally, two case studies are discussed, including the spark that arose interest in the compound: in the case of orthoformimycin, the novel mechanism of action predicted a novel structural class; in the case of NAI-112, structural similarity pointed out to a possible in vivo activity. Both predictions were then experimentally confirmed.  相似文献   

8.
ABSTRACT

Introduction: Aberrant glycosylation has been associated with many diseases. Decades of research activities have reported many reliable glycan biomarkers of different diseases which enable effective disease diagnostics and prognostics. However, none of the glycan markers have been approved for clinical diagnosis. Thus, a review of these studies is needed to guide the successful clinical translation.

Area covered: In this review, we describe and discuss advances in analytical methods enabling clinical glycan biomarker discovery, focusing only on studies of released glycans. This review also summarizes the different glycobiomarkers identified for cancers, Alzheimer’s disease, diabetes, hepatitis B and C, and other diseases.

Expert commentary: Along with the development of techniques in quantitative glycomics, more glycans or glycan patterns have been reported as better potential biomarkers of different diseases and proved to have greater diagnostic/diagnostic sensitivity and specificity than existing markers. However, to successfully apply glycan markers in clinical diagnosis, more studies and verifications on large biological cohorts need to be performed. In addition, faster and more efficient glycomic strategies need to be developed to shorten the turnaround time. Thus, glycan biomarkers have an immense chance to be used in clinical prognosis and diagnosis of many diseases in the near future.  相似文献   

9.
Recent advances in sialic acid-focused glycomics   总被引:1,自引:0,他引:1  
Nie H  Li Y  Sun XL 《Journal of Proteomics》2012,75(11):3098-3112
Recent emergences of glycobiology, glycotechnology and glycomics have been clarifying enormous roles of carbohydrates in biological recognition systems. For example, cell surface carbohydrates existing as glycoconjugates (glycolipids, glycoproteins and proteoglycans) play crucial roles in cell-cell communication, cell proliferation and differentiation, tumor metastasis, inflammatory response or viral infection. In particular, sialic acids (SAs) existing as terminal residues in carbohydrate chains on cell surface are involved in signal recognition and adhesion to ligands, antibodies, enzymes and microbes. In addition, plasma free SAs and sialoglycans have shown great potential for disease biomarker discovery. Therefore, the development of efficient analytical methods for structural and functional studies of SAs and sialylglycans are very important and highly demanded. The problems of SAs and sialylglycans analysis are vanishingly small sample amount, complicated and unstable structures, and complex mixtures. Nevertheless, in the past decade, mass spectrometry in combination with chemical derivatization and modern separation methodologies has become a powerful and versatile technique for structural analysis of SAs and sialylglycans. This review summarizes these recent advances in glycomic studies on SAs and sialylglycans. Specially, derivatization and capturing of SAs and sialylglycans combined with mass spectrometry analysis are highlighted.  相似文献   

10.
糖组学是研究糖链组成及其功能的一门新学科,近年来备受关注.目前糖组学的研究还处于起步阶段,阻碍糖组学迅速发展的主要原因是糖链本身结构的复杂性和研究技术的限制.微阵列技术作为一种快速、高效、高通量、微型化和自动化的分析技术,已经在基因组学和蛋白质组学的研究中发挥了重要的作用,将其应用于糖组学研究必将推动糖组学的发展.  相似文献   

11.
Carbohydrate microarrays are powerful tools in glycomics. Interactions of different carbohydrate structures with a wide variety of biological targets, including proteins, RNA, viruses, and whole cells, have been investigated using this technique. Binding preferences and specificities, inhibition of interactions, enzymatic activities, and structure-function relationships have been determined. Screening and characterization of antibodies have been conducted using microarrays. Binding of whole cells to the arrays has been exploited to search for novel binding proteins and to detect bacteria in blood. Here, we review the different techniques for carbohydrate microarray production and application. To illustrate the utility of arrays for glycomics research, some select experiments are discussed in greater detail.  相似文献   

12.
13.
14.
The adult mammal brain is mostly considered as non-neurogenic, except in the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus, where ongoing neurogenesis occurs. However, anti-neurogenic influences can be removed in pathological conditions or after specific injury. That is what happens in a model of unilateral vestibular neurectomy (UVN) that mimics human pathology in adult cats. We showed for the first time that a UVN promoted an intense reactive cell proliferation in the deafferented vestibular nuclei located in the brainstem. The new cells survived up to one month, differentiated into glial cells - microglia or astrocytes - or GABAergic neurons, so highlighting a GABAergic neurogenesis. Surprisingly, we further showed that post-UVN reactive cell proliferation contributed successfully to fine restoration of vestibular posturo-locomotor functions. In conclusion, these pioneering studies bring new pieces of a promising puzzle in both stem cell and vestibular therapy domains.  相似文献   

15.
Abstract

Purpose: Skin contributes to joint position sense (JPS) at multiple joints. Altered cutaneous input at the foot can modulate gait and balance and kinesiology tape can enhance proprioception at the knee, but its effect may be dependent on existing capacity. The effect of texture at the knee, particularly in those with poor proprioception, is unknown. The aim of this study was to determine the effect of textured panels on JPS about the knee.

Materials and methods: Eighteen healthy females were seated in an adjustable chair. Their left leg (target limb) moved passively from 65° to a target of flexion (115° or 90°) or extension (40°). Their right leg (matching limb) was passively moved towards this target angle and participants indicated when their limbs felt aligned. We tested three textured panels over the knee of the matching limb and two control conditions. The target limb maintained a control panel. Directional error, absolute error and variable error in matching between limbs were calculated.

Results: On average textured panels over the knee increased JPS error compared to control pants for participants with poor JPS. These participants undershot the target at 90° of flexion significantly more with textured panels (?11°?±?3°) versus control (?7°?±?3°, p?=?0.04).

Conclusions: For participants with poor JPS accuracy, increased JPS error at 90° with a textured panel suggests these individuals utilised altered cutaneous information to adjust joint position. We propose increased error results from enhanced skin input at the knee leading to the perception of increased flexion.  相似文献   

16.
17.
Analysis of complex and redundant pathways that control proliferation, differentiation, apoptosis and DNA damage response by global genome wide analysis is an intensive area of investigation aimed at identifying unique molecular signatures of prognostic significance in cancer. An alternative approach is to focus on the cell cycle machinery, which acts as an integration point for information transduced through upstream signalling pathways. Analysis of the DNA replication licensing pathway and the mitotic regulatory machinery in tumour biopsy material is now leading to the identification of novel biomarkers that are being exploited in cancer detection and prognostic assessment.  相似文献   

18.
Free oligosaccharides are abundant components of mammalian milk and have primary roles as prebiotic compounds, in immune defense, and in brain development. A mass spectrometry-based technique is applied to profile milk oligosaccharides from apes (chimpanzee, gorilla, and siamang), new world monkeys (golden lion tamarin and common marmoset), and an old world monkey (rhesus). The purpose of this study is to evaluate the patterns of primate milk oligosaccharide composition from a phylogenetic perspective to assess the extent to which the compositions of HMOs derives from ancestral primate patterns as opposed to more recent evolutionary events. Milk oligosaccharides were quantitated by nanoflow liquid chromatography on chip-based devices. The relative abundances of fucosylated and sialylated milk oligosaccharides in primates were also determined. For a systematic and comprehensive study of evolutionary patterns of milk oligosaccharides, cluster analysis of primate milk was performed using the chromatographic profile. In general, the oligosaccharides in primate milk, including humans, are more complex and exhibit greater diversity compared to the ones in nonprimate milk. A detailed comparison of the oligosaccharides across evolution revealed nonsequential developmental pattern, that is, that primate milk oligosaccharides do not necessarily cluster according to the primate phylogeny. This report represents the first comprehensive and quantitative effort to profile and elucidate the structures of free milk oligosaccharides so that they can be related to glycan function in different primates.  相似文献   

19.
The Third International Conference on Intelligent Systems in Molecular Biology was truly an outstanding event. Computational methods in molecular biology have reached a new level of maturity and utility, resulting in many high-impact applications. The success of this meeting bodes well for the rapid and continuing development of computational methods, intelligent systems and information-based approaches for the biosciences. The basic technology, originally most often applied to ‘feasibility’ problems, is now dealing effectively with the most difficult real-wold problems. Significant progress has been made in understanding protein-structure information, structural classification, and how functional information and the relevant features of active-site geometry can be gleaned from structures by automated computational approaches. The value and limits of homology-based methods, and the ability to classify proteins by structure in the absence of homology, have reached a new level of sophistication. New methods for covariation analysis in the folding of large structures such as RNAs have shown remarkably good results, indicating the long-term potential to understand very complicated molecules and multimolecular complexes using computational means. Novel methods, such as HMMs, context-free grammars and the uses of mutual information theory, have taken center stage as highly valuable tools in our quest to represent and characterize biological information. A focus on creative uses of intelligent systems technologies and the trend toward biological application will undoubtedly continue and grow at the 1996 ISMB meeting in St Louis.  相似文献   

20.
Electronic health record (EHR) systems offer an exceptional opportunity for studying many diseases and their associated medical conditions within a population. The increasing number of clinical record entries that have become available electronically provides access to rich, large sets of patients' longitudinal medical information. By integrating and comparing relations found in the EHRs with those already reported in the literature, we are able to verify existing and to identify rare or novel associations. Of particular interest is the identification of rare disease co-morbidities, where the small numbers of diagnosed patients make robust statistical analysis difficult. Here, we introduce ADAMS, an Application for Discovering Disease Associations using Multiple Sources, which contains various statistical and language processing operations. We apply ADAMS to the New York-Presbyterian Hospital's EHR to combine the information from the relational diagnosis tables and textual discharge summaries with those from PubMed and Wikipedia in order to investigate the co-morbidities of the rare diseases Kaposi sarcoma, toxoplasmosis, and Kawasaki disease. In addition to finding well-known characteristics of diseases, ADAMS can identify rare or previously unreported associations. In particular, we report a statistically significant association between Kawasaki disease and diagnosis of autistic disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号