首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.  相似文献   

2.
Archaeal host cells infected by Sulfolobus turreted icosahedral virus (STIV) and Sulfolobus islandicus rod-shaped virus 2 (SIRV2) produce unusual pyramid-like structures on the cell surface prior to virus-induced cell lysis. This viral lysis process is distinct from known viral lysis processes associated with bacterial or eukaryal viruses. The STIV protein C92 and the SIRV2 protein 98 are the only viral proteins required for the formation of the pyramid lysis structures of STIV and SIRV2, respectively. Since SIRV2 and STIV have fundamentally different morphotypes and genome sequences, it is surprising that they share this lysis system. In this study, we have constructed a collection of C92/P98 chimeric proteins and tested their abilities, both in the context of virus replication and alone, to form pyramid lysis structures in S. solfataricus. The results of this study illustrate that these proteins are functionally homologous when expressed as individual chimeric proteins but not when expressed in the context of complete STIV infection.  相似文献   

3.
Where there is life, there are viruses. The impact of viruses on evolution, global nutrient cycling, and disease has driven research on their cellular and molecular biology. Knowledge exists for a wide range of viruses; however, a major exception are viruses with archaeal hosts. Archaeal virus-host systems are of great interest because they have similarities to both eukaryotic and bacterial systems and often live in extreme environments. Here we report the first proteomics-based experiments on archaeal host response to viral infection. Sulfolobus Turreted Icosahedral Virus (STIV) infection of Sulfolobus solfataricus P2 was studied using 1D and 2D differential gel electrophoresis (DIGE) to measure abundance and redox changes. Cysteine reactivity was measured using novel fluorescent zwitterionic chemical probes that, together with abundance changes, suggest that virus and host are both vying for control of redox status in the cells. Proteins from nearly 50% of the predicted viral open reading frames were found along with a new STIV protein with a homologue in STIV2. This study provides insight to features of viral replication novel to the archaea, makes strong connections to well-described mechanisms used by eukaryotic viruses such as ESCRT-III mediated transport, and emphasizes the complementary nature of different omics approaches.  相似文献   

4.
Virion release from the host cell is the final and essential step for completion of the viral life cycle and spread of virions in the environment. Although for eukaryotic and bacterial viruses the egress mechanisms are reasonably well understood, this subject has not been studied in detail for archaeal viruses until recently. Here we summarize available data on the extraordinary egress mechanism exploited by the Sulfolobus islandicus rod-shaped virus SIRV2 and the Sulfolobus turreted icosahedral virus STIV. In addition, we describe features of the virus-induced pyramidal formation, VAP, involved in this process. Being an autonomous structure different from the capsid, the VAP can be considered as a representative of a specific class of virus-coded structures which we suggest to name 'virodomes'.  相似文献   

5.
Icosahedral nontailed double-stranded DNA (dsDNA) viruses are present in all three domains of life, leading to speculation about a common viral ancestor that predates the divergence of Eukarya, Bacteria, and Archaea. This suggestion is supported by the shared general architecture of this group of viruses and the common fold of their major capsid protein. However, limited information on the diversity and replication of archaeal viruses, in general, has hampered further analysis. Sulfolobus turreted icosahedral virus (STIV), isolated from a hot spring in Yellowstone National Park, was the first icosahedral virus with an archaeal host to be described. Here we present a detailed characterization of the components forming this unusual virus. Using a proteomics-based approach, we identified nine viral and two host proteins from purified STIV particles. Interestingly, one of the viral proteins originates from a reading frame lacking a consensus start site. The major capsid protein (B345) was found to be glycosylated, implying a strong similarity to proteins from other dsDNA viruses. Sequence analysis and structural predication of virion-associated viral proteins suggest that they may have roles in DNA packaging, penton formation, and protein-protein interaction. The presence of an internal lipid layer containing acidic tetraether lipids has also been confirmed. The previously presented structural models in conjunction with the protein, lipid, and carbohydrate information reported here reveal that STIV is strikingly similar to viruses associated with the Bacteria and Eukarya domains of life, further strengthening the hypothesis for a common ancestor of this group of dsDNA viruses from all domains of life.  相似文献   

6.
We applied whole-cell electron cryotomography to the archaeon Sulfolobus infected by Sulfolobus turreted icosahedral virus (STIV), which belongs to the PRD1-Adeno lineage of dsDNA viruses. STIV infection induced the formation of pyramid-like protrusions with sharply defined facets on the cell surface. They had a thicker cross-section than the cytoplasmic membrane and did not contain an exterior surface protein layer (S-layer). Intrapyramidal bodies often occupied the volume of the pyramids. Mature virions, procapsids without genome cores, and partially assembled particles were identified, suggesting that the capsid and inner membrane coassemble in the cytoplasm to form a procapsid. A two-class reconstruction using a maximum likelihood algorithm demonstrated that no dramatic capsid transformation occurred upon DNA packaging. Virions tended to form tightly packed clusters or quasicrystalline arrays while procapsids mostly scattered outside or on the edges of the clusters. The study revealed vivid images of STIV assembly, maturation, and particle distribution in cell.  相似文献   

7.
8.
Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV) RNA replication occurs on perinuclear endoplasmic reticulum (ER) membranes in ~70 nm vesicular invaginations (spherules). BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport) membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV) spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance.  相似文献   

9.
Sulfolobus turreted icosahedral virus (STIV) was the first icosahedral virus characterized from an archaeal host. It infects Sulfolobus species that thrive in the acidic hot springs (pH 2.9 to 3.9 and 72 to 92 degrees C) of Yellowstone National Park. The overall capsid architecture and the structure of its major capsid protein are very similar to those of the bacteriophage PRD1 and eukaryotic viruses Paramecium bursaria Chlorella virus 1 and adenovirus, suggesting a viral lineage that predates the three domains of life. The 17,663-base-pair, circular, double-stranded DNA genome contains 36 potential open reading frames, whose sequences generally show little similarity to other genes in the sequence databases. However, functional and evolutionary information may be suggested by a protein's three-dimensional structure. To this end, we have undertaken structural studies of the STIV proteome. Here we report our work on A197, the product of an STIV open reading frame. The structure of A197 reveals a GT-A fold that is common to many members of the glycosyltransferase superfamily. A197 possesses a canonical DXD motif and a putative catalytic base that are hallmarks of this family of enzymes, strongly suggesting a glycosyltransferase activity for A197. Potential roles for the putative glycosyltransferase activity of A197 and their evolutionary implications are discussed.  相似文献   

10.
代军  仇旭升  丁铲 《生物工程学报》2023,39(10):3948-3965
内吞体分选转运复合体(endosomal sorting complex required for transport,ESCRT)系统驱动细胞的不同生命进程,包括内体分选、细胞器生物发生、囊泡运输、维持质膜完整性、细胞质分裂期间的膜裂变、有丝分裂后的核膜重组、自噬过程中吞噬孔的封闭以及包膜病毒出芽等。越来越多的证据表明,ESCRT系统能够被不同家族病毒劫持用于自身增殖。在病毒生命周期的不同阶段,病毒可以通过各种方式干扰或利用ESCRT系统介导的生理过程,最大限度地提高感染宿主的机会。此外,许多逆转录病毒和RNA病毒蛋白具有“晚期结构域”基序,可招募宿主ESCRT亚基蛋白帮助病毒内吞、运输、复制、出芽以及外排。因此,病毒“晚期结构域”基序和ESCRT亚基蛋白可能是病毒感染治疗中具有广泛应用前景的药物靶点。本文重点综述了ESCRT系统的组成及功能,ESCRT亚基和病毒“晚期结构域”基序对病毒复制的影响以及ESCRT介导的抗病毒作用,以期为抗病毒药物的开发和利用提供参考。  相似文献   

11.
The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor.  相似文献   

12.
Viruses of the extremely thermophilic archaeon Sulfolobus   总被引:5,自引:0,他引:5  
Viruses of Sulfolobus are highly unusual in their morphology, and genome structure and sequence. Certain characteristics of the replication strategies of these viruses and the virus-host interactions suggest relationships with eukaryal and bacterial viruses, and the primeval existence of common ancestors. Moreover, studying these viruses led to the discovery of archaeal promoters and has provided tools for the development of the molecular genetics of these organisms. The Sulfolobus viruses contain unique regulatory features and structures that undoubtedly hold surprises for researchers in the future.  相似文献   

13.
14.
Cellular Bcl-2 family proteins regulate a critical step in the mammalian programmed cell death pathway by modulating mitochondrial permeability and function. Bcl-2 family proteins are also encoded by several large DNA viruses, including all known gamma herpesviruses, adenoviruses, and several other unrelated viruses. Viral Bcl-2 proteins can prevent cell death but often escape cellular regulatory mechanisms that govern their cellular counterparts. By evading the "altruistic" suicide of infected cells, viruses can ensure replication and propagation in the infected host, but sometimes in surprising ways. Many human cancers and other disorders are associated with viruses that encode Bcl-2 homologs. Here we consider the available mechanistic data for viral compared to cellular Bcl-2 protein function along with relevance to the virus life cycle and human disease states.  相似文献   

15.
Archaeal organisms are generally known as diverse extremophiles, but they play a crucial role also in moderate environments. So far, only about 50 archaeal viruses have been described in some detail. Despite this, unusual viral morphotypes within this group have been reported. Interestingly, all isolated archaeal viruses have a double-stranded DNA (dsDNA) genome. To further characterize the diversity of archaeal viruses, we screened highly saline water samples for archaea and their viruses. Here, we describe a new haloarchaeal virus, Halorubrum pleomorphic virus 1 (HRPV-1) that was isolated from a solar saltern and infects an indigenous host belonging to the genus Halorubrum . Infection does not cause cell lysis, but slightly retards growth of the host and results in high replication of the virus. The sequenced genome (7048 nucleotides) of HRPV-1 is single-stranded DNA (ssDNA), which makes HRPV-1 the first characterized archaeal virus that does not have a dsDNA genome. In spite of this, similarities to another archaeal virus were observed. Two major structural proteins were recognized in protein analyses, and by lipid analyses it was shown that the virion contains a membrane. Electron microscopy studies indicate that the enveloped virion is pleomorphic (approximately 44 × 55 nm). HRPV-1 virion may represent commonly used virion architecture, and it seems that structure-based virus lineages may be extended to non-icosahedral viruses.  相似文献   

16.
Viruses intricately interact with and modulate cellular membranes at several stages of their replication, but much less is known about the role of viral lipids compared to proteins and nucleic acids. All animal viruses have to cross membranes for cell entry and exit, which occurs by membrane fusion (in enveloped viruses), by transient local disruption of membrane integrity, or by cell lysis. Furthermore, many viruses interact with cellular membrane compartments during their replication and often induce cytoplasmic membrane structures, in which genome replication and assembly occurs. Recent studies revealed details of membrane interaction, membrane bending, fission, and fusion for a number of viruses and unraveled the lipid composition of raft-dependent and -independent viruses. Alterations of membrane lipid composition can block viral release and entry, and certain lipids act as fusion inhibitors, suggesting a potential as antiviral drugs. Here, we review viral interactions with cellular membranes important for virus entry, cytoplasmic genome replication, and virus egress.  相似文献   

17.
The late Nobel Laureate Sir Peter Medawar once memorably described viruses as ‘bad news wrapped in protein’. Virus assembly in HIV is a remarkably well coordinated process in which the virus achieves extracellular budding using primarily intracellular budding machinery and also the unusual phenomenon of export from the cell of an RNA. Recruitment of the ESCRT system by HIV is one of the best documented examples of the comprehensive way in which a virus hijacks a normal cellular process. This review is a summary of our current understanding of the budding process of HIV, from genomic RNA capture through budding and on to viral maturation, but centering on the proteins of the ESCRT pathway and highlighting some recent advances in our understanding of the cellular components involved and the complex interplay between the Gag protein and the genomic RNA.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) becomes enveloped while budding through the plasma membrane, and the release of nascent virions requires a membrane fission event that separates the viral envelope from the cell surface. To facilitate this crucial step in its life cycle, HIV-1 exploits a complex cellular membrane remodeling and fission machinery known as the endosomal sorting complex required for transport (ESCRT) pathway. HIV-1 Gag directly interacts with early-acting components of this pathway, which ultimately triggers the assembly of the ESCRT-III membrane fission complex at viral budding sites. Surprisingly, HIV-1 requires only a subset of ESCRT-III components, indicating that the membrane fission reaction that occurs during HIV-1 budding differs in crucial aspects from topologically related cellular abscission events.  相似文献   

19.
Holliday junction resolving enzymes are required by all life forms that catalyse homologous recombination, including all cellular organisms and many bacterial and eukaryotic viruses. Here we report the identification of three distinct Holliday junction resolving enzyme activities present in two highly divergent archaeal species. Both Sulfolobus and Pyrococcus share the Hjc activity, and in addition possess unique secondary activities (Hje and Hjr). We propose by analogy with the two other domains of life that the latter enzymes are viral in origin, suggesting the widespread existence of archaeal viruses that rely on homologous recombination as part of their life cycle.  相似文献   

20.
Viruses utilize a diverse array of mechanisms to deliver their genomes into hosts. While great strides have been made in understanding the genome delivery of eukaryotic and prokaryotic viruses, little is known about archaeal virus genome delivery and the associated particle changes. The Sulfolobus turreted icosahedral virus (STIV) is a double-stranded DNA (dsDNA) archaeal virus that contains a host-derived membrane sandwiched between the genome and the proteinaceous capsid shell. Using cryo-electron microscopy (cryo-EM) and different biochemical treatments, we identified three viral morphologies that may correspond to biochemical disassembly states of STIV. One of these morphologies was subtly different from the previously published 27-Å-resolution electron density that was interpreted with the crystal structure of the major capsid protein (MCP). However, these particles could be analyzed at 12.5-Å resolution by cryo-EM. Comparing these two structures, we identified the location of multiple proteins forming the large turret-like appendages at the icosahedral vertices, observed heterogeneous glycosylation of the capsid shell, and identified mobile MCP C-terminal arms responsible for tethering and releasing the underlying viral membrane to and from the capsid shell. Collectively, our studies allow us to propose a fusogenic mechanism of genome delivery by STIV, in which the dismantled capsid shell allows for the fusion of the viral and host membranes and the internalization of the viral genome.Viruses are valuable biological tools for manipulating the cellular processes of their hosts, and they can also serve as model systems for describing macromolecular interactions through the analysis of their architecture. The Sulfolobus turreted icosahedral virus (STIV) is an archaeal virus that infects Sulfolobus solfataricus (phylum Crenarchaeota). STIV is a lytic virus that was isolated from an acidic hot spring (>80°C and pH of <3) in Yellowstone National Park (27). Hence, STIV is an important model for studying the biochemical requirements to sustain life in extreme physicochemical conditions and has the potential to become a tool for the biochemical and genetic manipulation of its host—much like bacteriophages lambda, P22, and phi29 have done for their respective hosts.Prior structural studies of STIV using cryo-electron microscopy (cryo-EM), X-ray crystallography, and proteomics have described large pentameric turret-like structures, with petal-like protrusions emanating from their central shafts (27). The T=31d capsid shell is composed of trimeric capsomers exhibiting pseudo-hexagonal symmetry, in which each of the three capsomer subunits donates two viral jelly rolls with its β-sheets normal to the capsid surface (15, 27). Capsomers surrounding the icosahedral 3-fold axes, and their neighboring subunits, make direct contact with the viral membrane via a highly basic C-terminal helix of each subunit (15, 23). Surrounding the base of the turrets are proteins that make contact with the capsid shell and a host-derived viral membrane (15). The viral membrane and the enclosed viral genome are referred to as the lipid core.The capsid architecture of STIV and the crystal structure of its major capsid protein (MCP) are strikingly similar to those of the bacteriophages PRD1, Bam35, and PM2, the alga virus PBCV-1, and the mammalian adenovirus. This similarity suggests that these viruses share an ancestral virus (2, 4, 7, 15, 25). Given the evolutionary relationship shared between STIV and PRD1, we postulated that the large turret-like vertices of STIV were used to inject the viral genome into the Sulfolobus host—a genome delivery mechanism employed by PRD1 (27).A recent report by Brumfield et al. (5) describes gross cellular ultrastructural changes induced in the Sulfolobus host during STIV infection and release. The authors identified distinct particles that appear to be assembly intermediates of STIV en route to maturation. From these intermediates the authors proposed a general mechanism of capsid assembly, in which MCP subunits and minor capsid proteins (mCPs) coassemble with the lipid membrane to form a lipid-enclosed protein vesicle. These vesicles are spherical and lack the double-stranded DNA (dsDNA) genome and turret-like appendages at the vertices.While these studies confirm an empty procapsid intermediate, the corresponding molecular mechanism associated with assembly and disassembly remains to be understood. Moreover, little is known about STIV or other archaeal virus genome delivery into the host. To obtain a better understanding of the molecular mechanism of STIV architecture and its role in genome delivery, we characterized three distinct morphologies of STIV particles using cryo-EM. An image reconstruction of one of these revealed the absence of a number of constituents decorating the STIV capsid. Hence, for simplicity, we refer to the previously reported image reconstruction (27) as “decorated” and the new image reconstruction reported here as “undecorated.” Reference-free two-dimensional (2D) class averages of the second identified morphology reveal a partially decorated STIV lipid core. The third identified morphology corresponds to the isolated STIV lipid core. Taken together, our analyses indicate that these morphologies correspond to different disassembly intermediates of STIV that can be isolated in vitro and help provide a picture of the STIV capsid architecture. Additionally, these morphologies allow us to propose an alternative possible mechanism of genome delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号