首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory reduction of nitrate and nitrite is encoded in Thermus thermophilus by the respective transferable gene clusters. Nitrate is reduced by a heterotetrameric nitrate reductase (Nar) encoded along transporters and regulatory signal transduction systems within the nitrate respiration conjugative element (NCE). The nitrite respiration cluster (nic) encodes homologues of nitrite reductase (Nir) and nitric oxide reductase (Nor). The expression and role of the nirSJM genes in nitrite respiration were analyzed. The three genes are expressed from two promoters, one (nirSp) producing a tricistronic mRNA under aerobic and anaerobic conditions and the other (nirJp) producing a bicistronic mRNA only under conditions of anoxia plus a nitrogen oxide. As for its nitrite reductase homologues, NirS is expressed in the periplasm, has a covalently bound heme c, and conserves the heme d1 binding pocket. NirJ is a cytoplasmic protein likely required for heme d1 synthesis and NirS maturation. NirM is a soluble periplasmic homologue of cytochrome c552. Mutants defective in nirS show normal anaerobic growth with nitrite and nitrate, supporting the existence of an alternative Nir in the cells. Gene knockout analysis of different candidate genes did not allow us to identify this alternative Nir protein but revealed the requirement for Nar in NirS-dependent and NirS-independent nitrite reduction. As the likely role for Nar in the process is in electron transport through its additional cytochrome c periplasmic subunit (NarC), we concluded all the Nir activity takes place in the periplasm by parallel pathways.  相似文献   

2.
Laboratory-adapted strains of Thermus spp. have been shown to require oxygen for growth, including the model strains T. thermophilus HB27 and HB8. In contrast, many isolates of this species that have not been intensively grown under laboratory conditions keep the capability to grow anaerobically with one or more electron acceptors. The use of nitrogen oxides, especially nitrate, as electron acceptors is one of the most widespread capabilities among these facultative strains. In this process, nitrate is reduced to nitrite by a reductase (Nar) that also functions as electron transporter toward nitrite and nitric oxide reductases when nitrate is scarce, effectively replacing respiratory complex III. In many T. thermophilus denitrificant strains, most electrons for Nar are provided by a new class of NADH dehydrogenase (Nrc). The ability to reduce nitrite to NO and subsequently to N2O by the corresponding Nir and Nor reductases is also strain specific. The genes encoding the capabilities for nitrate (nar) and nitrite (nir and nor) respiration are easily transferred between T. thermophilus strains by natural competence or by a conjugation-like process and may be easily lost upon continuous growth under aerobic conditions. The reason for this instability is apparently related to the fact that these metabolic capabilities are encoded in gene cluster islands, which are delimited by insertion sequences and integrated within highly variable regions of easily transferable extrachromosomal elements. Together with the chromosomal genes, these plasmid-associated genetic islands constitute the extended pangenome of T. thermophilus that provides this species with an enhanced capability to adapt to changing environments.  相似文献   

3.
4.
We examined the influence of soil aeration state and plant root presence on the comparative survival of wild-type bacteria and isogenic Tn5 (Nir(sup-)) mutants lacking the ability to synthesize nitrite reductase. Two denitrifying Pseudomonas strains with different nitrite reductase types were used. Enumeration of bacteria in sterile and nonsterile soils was based on differential antibiotic resistance. The validity of the bacterial models studied (i.e., equal growth of wild-type and mutant bacteria under aerobic conditions and significantly better growth of wild-type bacteria under denitrifying conditions) was verified in pure-culture studies. In sterile soil, both strains survived better under aerobic than under anaerobic conditions. The lower efficiency of denitrification than O(inf2) respiration in supporting bacterial growth explained this result, and the physical heterogeneity of soil did not strongly modify the results obtained in pure-culture studies. In nonsterile soil, one of the Pseudomonas strains survived better under anaerobic conditions while the other competed equally with the indigenous soil microflora under aerobic and anaerobic conditions. However, when the Nir(sup-)-to-total inoculant ratios (wild type plus Nir(sup-) mutant) were analyzed, it appeared that the presence of nitrite reductase conferred on both Pseudomonas strains a competitive advantage for anaerobic environment or rhizosphere colonization. This is the first attempt to demonstrate with isogenic nondenitrifying mutants that denitrification can contribute to the persistence and distribution of bacteria in fluctuating soil environments.  相似文献   

5.
A PCR-based approach was developed to recover nitric oxide (NO) reductase (norB) genes as a functional marker gene for denitrifying bacteria. norB database sequences grouped in two very distinct branches. One encodes the quinol-oxidizing single-subunit class (qNorB), while the other class is a cytochrome bc-type complex (cNorB). The latter oxidizes cytochrome c, and the gene is localized adjacent to norC. While both norB types occur in denitrifying strains, the qnorB type was also found in a variety of nondenitrifying strains, suggesting a function in detoxifying NO. Branch-specific degenerate primer sets detected the two norB types in our denitrifier cultures. Specificity was confirmed by sequence analysis of the norB amplicons and failure to amplify norB from nondenitrifying strains. These primer sets also specifically amplified norB from freshwater and marine sediments. Pairwise comparison of amplified norB sequences indicated minimum levels of amino acid identity of 43.9% for qnorB and 38% for cnorB. Phylogenetic analysis confirmed the existence of two classes of norB genes, which clustered according to the respective primer set. Within the qnorB cluster, the majority of genes from isolates and a few environmental clones formed a separate subcluster. Most environmental qnorB clones originating from both habitats clustered into two distinct subclusters of novel sequences from presumably as yet uncultivated organisms. cnorB clones were located on separate branches within subclusters of genes from known organisms, suggesting an origin from similar organisms.  相似文献   

6.
In Rhizobium meliloti 2011 nodulation genes (nod) required to nodulate specifically alfalfa are located on a pSym megaplasmid. Nod- derivatives carrying large pSym deletions were isolated. By complementation of these strains with in vivo- and in vitro-constructed episomes containing pSym of sequences and introduction of these episomes into Agrobacterium tumefaciens, we show (i) that from a region of pSym of about 360 kilobases, genes required for specific alfalfa nodulation are clustered in a DNA fragment of less than 30 kilobases and (ii) that a nod region located between nifHDK and the common nod genes is absolutely required for alfalfa nodulation and controls the specificity of root hair curling and nodule organogenesis initiation.  相似文献   

7.
Pseudomonas aeruginosa strains deficient in the genes for cytochrome c1, a subunit of the cytochrome bc1 complex, or the tetraheme membrane protein NapC, which is similar to NirT of Pseudomonas stutzeri, were constructed and their growth was investigated. The cytochrome c1 mutant could not grow under anaerobic conditions with nitrite as an electron acceptor and did not reduce nitrite in spite of its producing active nitrite reductase. NirM (cytochrome c551) and azurin, which are the direct electron donors for nitrite reductase, were reduced by succinate in the presence of the membrane fraction from the wild-type strain as a mediator but not in the presence of that from the cytochrome c1 mutant. These results indicated that cytochrome bc1 complex was necessary for electron transfer from the membrane quinone pool to nitrite reductase. The NapC mutant grew anaerobically at the expense of nitrite, indicating that NapC was not necessary for nitrite reduction.  相似文献   

8.
9.
Summary Large plasmids of molecular weight varying from 90 to around 200×106 have earlier been detected in most Rhizobium meliloti strains using an alkaline denaturation-phenol extraction procedure. With a less destructive method (Eckhardt 1978) it was possible additionally to detect one plasmid of molecular weight clearly greater than 300×106 (=megaplasmid) in all of twenty-seven R. meliloti strains of various geographical origins and nodulation groupings investigated. Four strains (RCR 2011, A145, S26 and CC2013) were found to carry one megaplasmid and no smaller plasmids. Hybridization experiments with Klebsiella pneumoniae and R. meliloti cloned nitrogenase structural genes D and H showed that these genes are located on the megaplasmid and not on the smaller plasmids.All of the ten independent spontaneous non-nodulating derivatives of three strains of R. meliloti were shown to have suffered a deletion in the nif DH region of the megaplasmid. These results indicate that a gene controlling an early step in nodule formation is located in the nif DH region of the megaplasmid. This indicates that the same replicon carries genes controlling early and late functions in symbiosis.  相似文献   

10.
11.
The self-transmissible megaplasmid pHG1 carries essential genetic information for the facultatively lithoautotrophic and facultatively anaerobic lifestyles of its host, the Gram-negative soil bacterium Ralstonia eutropha H16. We have determined the complete nucleotide sequence of pHG1. This megaplasmid is 452,156 bp in size and carries 429 potential genes. Groups of functionally related genes form loose clusters flanked by mobile elements. The largest functional group consists of lithoautotrophy-related genes. These include a set of 41 genes for the biosynthesis of the three previously identified hydrogenases and of a fourth, novel hydrogenase. Another large cluster carries the genetic information for denitrification. In addition to a dissimilatory nitrate reductase, both specific and global regulators were identified. Also located in the denitrification region is a set of genes for cytochrome c biosynthesis. Determinants for several enzymes involved in the mineralization of aromatic compounds were found. The genes for conjugative plasmid transfer predict that R.eutropha forms two types of pili. One of them is related to the type IV pili of pathogenic enterobacteria. pHG1 also carries an extensive "junkyard" region encompassing 17 remnants of mobile elements and 22 partial or intact genes for phage-type integrase. Among the mobile elements is a novel member of the IS5 family, in which the transposase gene is interrupted by a group II intron.  相似文献   

12.
Plasmid DNA of six strains of Rhizobium galegae was blotted onto nitrocellulose and hybridized with the 4.8 kb PstI fragment of pRme4lb, a megaplasmid carrying the nifH and the nifD genes of Rhizobium meliloti. DNA sequences homologous to the nif genes were localized on the megaplasmid or on the large plasmid bands of the R. galegae strains tested. In three of the strains analysed the nif genes were located on the megaplasmids. In the other three strains investigated, which also possessed megaplasmids, the nif genes were located on the smaller plasmids.  相似文献   

13.
Membrane cytochromes of Escherichia coli chl mutants   总被引:6,自引:3,他引:3       下载免费PDF全文
The cytochromes present in the membranes of Escherichia coli cells having defects in the formate dehydrogenase-nitrate reductase system have been analyzed by spectroscopic, redox titration, and enzyme fractionation techniques. Four phenotypic classes differing in cytochrome composition were recognized. Class I is represented by strains with defects in the synthesis or insertion of molybdenum cofactor. Cytochromes of the formate dehydrogenase-nitrate reductase pathway are present. Class II strains map in the chlC-chlI region. The cytochrome associated with nitrate reductase (cytochrome bnr) is absent in these strains, whereas that associated with formate dehydrogenase (cytochrome bfdh) is the major cytochrome in the membranes. Class III strains lack both cytochromes bfdh and bnr but overproduce cytochrome d of the aerobic pathway even under anaerobic conditions in the presence of nitrate. Class III strains have defects in the regulation of cytochrome synthesis. An fdhA mutant produced cytochrome bnr but lacked cytochrome bfdh. These results support the view that chlI (narI) is the structural gene for cytochrome bnr and that chlC (narG) and chlI(narI) are in the same operon, and they provide evidence of the complexity of the regulation of cytochrome synthesis.  相似文献   

14.
Rhizobium meliloti carries two megaplasmids   总被引:16,自引:0,他引:16  
In Rhizobium meliloti strain 41 the existence of a second megaplasmid (pRme41c) with a molecular weight similar to the sym megaplasmid pRme41b was demonstrated. Derivatives of the wild-type strain carrying pRme41b or pRme41c tagged with Tn5 allowed the examination of the transfer ability of both megaplasmids. The introduction of megaplasmids into the wild-type R. meliloti was not detected, probably because of the action of plasmid genes coding for entry exclusion of the same type of plasmid. However, transmissibility of both megaplasmids was observed in matings with Nod- or Fix- pRme41b deletion mutant recipients and with Agrobacterium tumefaciens at frequencies of 10(-6) - 10(-8). Introduction of the megaplasmids into the R. meliloti recipients resulted in the loss of the same plasmid. On the other hand, pRme41b and pRme41c were compatible. From the extent of deletions in various Nod- and Fix- mutants a DNA region carrying genes probably involved in "surface exclusion" on pRme41b was located. This DNA region is about 50 kb distant from the nod genes and exhibits strong homology with a DNA segment of pRme41c. Symbiotic genes on pRme41c were not identified.  相似文献   

15.
Heterodisulfide reductase (Hdr) is a unique disulfide reductase that plays a key role in the energy metabolism of methanogenic archaea. Two types of Hdr have been identified and characterized from distantly related methanogens. Here we show that the sulfate-reducing archaeon Archaeoglobus profundus cultivated on H2/sulfate forms enzymes related to both types of Hdr. From the membrane fraction of A. profundus, a two-subunit enzyme (HmeCD) composed of a b-type cytochrome and a hydrophilic iron-sulfur protein was isolated. The amino-terminal sequences of these subunits revealed high sequence identities to subunits HmeC and HmeD of the Hme complex from A. fulgidus. HmeC and HmeD in turn are closely related to subunits HdrE and HdrD of Hdr from Methanosarcina spp. From the soluble fraction of A. profundus a six-subunit enzyme complex (Mvh:Hdl) containing Ni, iron-sulfur clusters and FAD was isolated. Via amino-terminal sequencing, the encoding genes were identified in the genome of the closely related species A. fulgidus in which these genes are clustered. They encode a three-subunit [NiFe] hydrogenase with high sequence identity to the F420-nonreducing hydrogenase from Methanothermobacter spp. while the remaining three polypeptides are related to the three-subunit heterodisulfide reductase from Methanothermobacter spp. The oxidized enzyme exhibited an unusual EPR spectrum with gxyz = 2.014, 1.939 and 1.895 similar to that observed for oxidized Hme and Hdr. Upon reduction with H2 this signal was no longer detectable.  相似文献   

16.
Rhodobacter sphaeroides 2.4.1T is a purple nonsulfur facultative phototrophic bacterium which exhibits remarkable metabolic diversity as well as genomic complexity. Under anoxic conditions, in the absence of light and the presence of dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO), R. sphaeroides 2.4.1T utilizes DMSO or TMAO as the terminal electron acceptor for anaerobic respiration, which is mediated by the molybdoenzyme DMSO reductase. Sequencing of a 13-kb region of chromosome II revealed the presence of 10 putative open reading frames, of which 5 possess homology to genes encoding the TMAO reductase (the tor system) of Escherichia coli. The dorS and dorR genes encode a sensor-regulator pair of the two-component sensory transduction protein family, homologous to the torS and torR gene products. The dorC gene was shown to encode a 44-kDa DMSO-inducible c-type cytochrome. The dorB gene encodes a membrane protein of unknown function homologous to the torD gene product. The dorA gene encodes DMSO reductase, containing the molybdopterin active site. Mutations were constructed in each of these dor genes, and the resulting mutants were shown to be impaired for DMSO-dependent anaerobic growth in the dark. The mutant strains exhibited negligible levels of DMSO reductase activity compared to the wild-type strain under similar growth conditions. Further, no DorA protein was detected in DorS and DorR mutant strains with anti-DorA antisera, suggesting that the products of these genes are required for the positive regulation of dor expression in response to DMSO. This characterization of the dor gene cluster is the first evidence that genes of chromosome CII encode metabolic functions which are essential under particular growth conditions.  相似文献   

17.
Dissimilatory nitrite reductase (Nir) of the fungus Cylindrocarpon tonkinense was isolated and partially characterized. Nir activity was recovered in both the soluble and the membrane fractions, giving a specific activity of 4.74 and 5.80 μmol NO min–1 (mg protein)–1, respectively. The soluble and membrane-associated Nir preparations resembled each other in properties, and the results suggested that Nir is a homodimer of a 67-kDa subunit. The absorption spectrum and the inhibition by diethyldithiocarbamate indicated that fungal Nir is a copper-containing Nir (CuNir). Received: 7 September 1998 / Accepted: 1 December 1998  相似文献   

18.
Nitric oxide is a key element in host defense against invasive pathogens. The periplasmic cytochrome c nitrite reductase (NrfA) of Escherichia coli catalyzes the respiratory reduction of nitrite, but in vitro studies have shown that it can also reduce nitric oxide. The physiological significance of the latter reaction in vivo has never been assessed. In this study the reduction of nitric oxide by Escherichia coli was measured in strains active or deficient in periplasmic nitrite reduction. Nrf(+) cells, harvested from cultures grown anaerobically, possessed a nitric-oxide reductase activity with physiological electron donation of 60 nmol min(-1) x mg dry wt(-1), and an in vivo turnover number of NrfA of 390 NO* s(-1) was calculated. Nitric-oxide reductase activity could not be detected in Nrf(-) strains. Comparison of the anaerobic growth of Nrf(+) and Nrf(-) strains revealed a higher sensitivity to nitric oxide in the NrfA(-) strains. A higher sensitivity to the nitrosating agent S-nitroso-N-acetyl penicillamine (SNAP) was also observed in agar plate disk-diffusion assays. Oxygen respiration by E. coli was also more sensitive to nitric oxide in the Nrf(-) strains compared with the Nrf(+) parent strain. The results demonstrate that active periplasmic cytochrome c nitrite reductase can confer the capacity for nitric oxide reduction and detoxification on E. coli. Genomic analysis of many pathogenic enteric bacteria reveals the presence of nrf genes. The present study raises the possibility that this reflects an important role for the cytochrome c nitrite reductase in nitric oxide management in oxygen-limited environments.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号