首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
RNA molecules play important and diverse regulatory roles in the cell by virtue of their interaction with other nucleic acids, proteins and small molecules. Inspired by this natural versatility, researchers have engineered RNA molecules with new biological functions. In the last two years efforts in synthetic biology have produced novel, synthetic RNA components capable of regulating gene expression in vivo largely in bacteria and yeast, setting the stage for scalable and programmable cellular behavior. Immediate challenges for this emerging field include determining how computational and directed-evolution techniques can be implemented to increase the complexity of engineered RNA systems, as well as determining how such systems can be broadly extended to mammalian systems. Further challenges include designing RNA molecules to be sensors of intracellular and environmental stimuli, probes to explore the behavior of biological networks and components of engineered cellular control systems.  相似文献   

4.
5.
6.
7.
The effectiveness of a drug is determined by the ability to migrate through the body and reach target sites in therapeutically relevant levels. Nanocarriers for delivery of bioactive agents are being developed at iNANO to maximise drug payload at target sites. The inclusion of “biological triggers” into the nanocarrier design is used for modulation of cellular nucleic acid trafficking and increased target interaction. Polymers were used to formulate nanocarriers in the size range 30–250 nm containing small interfering RNAs (siRNAs) for gene silencing applications. PAGE analysis showed the structural integrity of the siRNA was maintained during particle formation. In systems composed of bioresponsive polymers, nanocarrier disassembly and siRNA release under cellular conditions were shown, using Atomic Force Microscopy. The time course for siRNA uptake into NIH cells was visualised using confocal microscopy. In addition, siRNA localisation within cells could be modulated by the composition of the polymer used. The ability of the nanocarrier system to mediate gene expression was investigated in a cell line stably expressing enhanced green fluorescent protein (eGFP). Furthermore, the various delivery systems were tested in a mouse model stably expressing the eGFP protein using both nasal and intravenous delivery routes. The systems described in this work demonstrate an ability to transport siRNA into cells whilst maintaining siRNA functionality; essential properties for nanocarrier-based RNA interference strategies.  相似文献   

8.
A report of BioSysBio 2009, the IET conference on Synthetic Biology, Systems Biology and Bioinformatics, Cambridge, UK, 23-25 March 2009.  相似文献   

9.
RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation.  相似文献   

10.
11.
12.
Cell biologists are interested in how complexity arises from the interaction of different molecules. However, cells are many orders of magnitude larger than the protein-binding interfaces. To bridge these vast difference in scales, biologists construct hierarchies of organization of cellular structures. I describe how systems biology provides an approach to bridge these different scales.  相似文献   

13.
Microfluidics-based systems biology   总被引:1,自引:0,他引:1  
Systems biology seeks to develop a complete understanding of cellular mechanisms by studying the functions of intra- and inter-cellular molecular interactions that trigger and coordinate cellular events. However, the complexity of biological systems causes accurate and precise systems biology experimentation to be a difficult task. Most biological experimentation focuses on highly detailed investigation of a single signaling mechanism, which lacks the throughput necessary to reconstruct the entirety of the biological system, while high-throughput testing often lacks the fidelity and detail necessary to fully comprehend the mechanisms of signal propagation. Systems biology experimentation, however, can benefit greatly from the progress in the development of microfluidic devices. Microfluidics provides the opportunity to study cells effectively on both a single- and multi-cellular level with high-resolution and localized application of experimental conditions with biomimetic physiological conditions. Additionally, the ability to massively array devices on a chip opens the door for high-throughput, high fidelity experimentation to aid in accurate and precise unraveling of the intertwined signaling systems that compose the inner workings of the cell.  相似文献   

14.
Planetary systems biology   总被引:1,自引:0,他引:1  
Combining paleogenetics, protein engineering, synthetic biology, and metabolic modeling, a planetary biology perspective is brought to bear on adaptive evolutionary events in ancient bacteria.  相似文献   

15.
16.
Bernhard Palsson 《FEBS letters》2009,583(24):3900-3904
The first full genome sequences were established in the mid-1990s. Shortly thereafter, genome-scale metabolic network reconstructions appeared. Since that time, we have witnessed an exponential growth in their number and uses. Here I discuss, from a personal point of view, four topics: (1) the placement of metabolic systems biology in the context of broader scientific developments, (2) its foundational concepts, (3) some of its current uses, and (4) some of the expected future developments in the field.  相似文献   

17.
The review considers small nucleolar RNAs (snoRNAs), an abundant group of non-protein-coding RNAs. In association with proteins, snoRNAs determine the two most common nucleotide modifications in rRNA and some other cell RNAs: 2′-O-methylation of ribose and pseudouridylation. In addition, snoRNAs are involved in pre-mRNA cleavage and the telomerase function. Almost all snoRNAs fall into two families, C/D and H/ACA, distinguished by conserved sequence boxes. Although the proteins of C/D and H/ACA snoRNPs have homologous regions, these snoRNPs are assembled differently. The RNA components of RNases P and MRP are also classed with snoRNAs. Another problem considered is the structure and function of small RNAs from Cajal bodies (small organelles associated with the nucleoli), which are similar to snoRNAs.  相似文献   

18.
19.
Metabolic footprinting and systems biology: the medium is the message   总被引:1,自引:0,他引:1  
One element of classical systems analysis treats a system as a black or grey box, the inner structure and behaviour of which can be analysed and modelled by varying an internal or external condition, probing it from outside and studying the effect of the variation on the external observables. The result is an understanding of the inner make-up and workings of the system. The equivalent of this in biology is to observe what a cell or system excretes under controlled conditions - the 'metabolic footprint' or exometabolome - as this is readily and accurately measurable. Here, we review the principles, experimental approaches and scientific outcomes that have been obtained with this useful and convenient strategy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号