首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Neuroprotective properties of the mood stabilizer valproic acid (VPA) are implicated in its therapeutic efficacy. Heat-shock protein 70 (HSP70) is a molecular chaperone, neuroprotective and anti-inflammatory agent. This study aimed to investigate underlying mechanisms and functional significance of HSP70 induction by VPA in rat cortical neurons. VPA treatment markedly up-regulated HSP70 protein levels, and this was accompanied by increased HSP70 mRNA levels and promoter hyperacetylation and activity. Other HDAC inhibitors – sodium butyrate, trichostatin A, and Class I HDAC-specific inhibitors MS-275 and apicidin, – all mimicked the ability of VPA to induce HSP70. Pre-treatment with phosphatidylinositol 3-kinase inhibitors or an Akt inhibitor attenuated HSP70 induction by VPA and other HDAC inhibitors. VPA treatment increased Sp1 acetylation, and a Sp1 inhibitor, mithramycin, abolished the induction of HSP70 by HDAC inhibitors. Moreover, VPA promoted the association of Sp1 with the histone acetyltransferases p300 and recruitment of p300 to the HSP70 promoter. Further, VPA-induced neuroprotection against glutamate excitotoxicity was prevented by blocking HSP70 induction. Taken together, the data suggest that the phosphatidylinositol 3-kinase/Akt pathway and Sp1 are likely involved in HSP70 induction by HDAC inhibitors, and induction of HSP70 by VPA in cortical neurons may contribute to its neuroprotective and therapeutic effects.  相似文献   

2.
Park JA  Kim YE  Ha YH  Kwon HJ  Lee Y 《BMB reports》2012,45(5):299-304
The ubiquitin-proteasome system is a major proteolytic system for nonlysosomal degradation of cellular proteins. Here, we investigated the response of mouse embryonic stem (ES) cells under proteotoxic stress. Proteasome inhibitors induced expression of heat shock protein 70 (HSP70) in a concentration- and time-dependent manner, and also induced apoptosis of ES cells. Importantly, more apoptotic cells were observed in ES cells compared with other somatic cells. To understand this phenomenon, we further investigated the expression of HSP70 and pluripotent cell markers. HSP70 expression was more significantly increased in somatic cells than in ES cells, and expression levels of pluripotent cell markers such as Oct4 and Nanog were decreased in ES cells. These results suggest that higher sensitivity of ES cells to proteotoxic stress may be related with lower capacity of HSP70 expression and decreased pluripotent cell marker expression, which is essential for the survival of ES cells.  相似文献   

3.
JNK, a member of the mitogen-activated protein kinases (MAPKs), is activated by the MAPK kinases SEK1 and MKK7 in response to environmental stresses. In the present study, the effects of CdCl2 treatment on MAPK phosphorylation and HSP70 expression were examined in mouse embryonic stem (ES) cells lacking the sek1 gene, the mkk7 gene, or both. Following CdCl2 exposure, the phosphorylation of JNK, p38, and ERK was suppressed in sek1-/- mkk7-/- cells. When sek1-/- or mkk7-/- cells were treated with CdCl2, JNK phosphorylation, but not the phosphorylation of either p38 or ERK, was markedly reduced, while a weak reduction in p38 phosphorylation was observed in sek1-/- cells. Thus, both SEK1 and MKK7 are required for JNK phosphorylation, whereas their role in p38 and ERK phosphorylation could overlap with that of another kinase. We also observed that CdCl2-induced HSP70 expression was abolished in sek1-/- mkk7-/- cells, was reduced in sek1-/- cells, and was enhanced in mkk7-/- cells. Similarly, the phosphorylation of heat shock factor 1 (HSF1) was decreased in sek1-/- mkk7-/- and sek1-/- cells, but was increased in mkk7-/- cells. Transfection with siRNA specific for JNK1, JNK2, p38, ERK1, or ERK2 suppressed CdCl2-induced HSP70 expression. In contrast, silencing of p38 or p38 resulted in further accumulation of HSP70 protein. These results suggest that HSP70 expression is up-regulated by SEK1 and down-regulated by MKK7 through distinct MAPK isoforms in mouse ES cells treated with CdCl2.  相似文献   

4.
5.
LSD1 is essential for the maintenance of pluripotency of embryonic stem (ES) or embryonic carcinoma/teratocarcinoma (EC) cells. We have previously developed novel LSD1 inhibitors that selectively inhibit ES/EC cells. However, the critical targets of LSD1 remain unclear. Here, we found that LSD1 interacts with histone deacetylase 1 (HDAC1) to regulate the proliferation of ES/EC cells through acetylation of histone H4 at lysine 16 (H4K16), which we show is a critical substrate of HDAC1. The LSD1 demethylase and HDAC1 deacetylase activities were both inactivated if one of them in the complex was chemically inhibited in ES/EC cells or in reconstituted protein complexes. Loss of HDAC1 phenocopied the selective growth-inhibitory effects and increased the levels of H3K4 methylation and H4K16 acetylation of LSD1 inactivation on ES/EC cells. Reduction of acetylated H4K16 by ablation of the acetyltransferase males absent on the first (MOF) is sufficient to rescue the growth inhibition induced by LSD1 inactivation. While LSD1 or HDAC1 inactivation caused the downregulation of Sox2 and Oct4 and induction of differentiation genes, such as FOXA2 or BMP2, depletion of MOF restored the levels of Sox2, Oct4, and FoxA2 in LSD1-deficient cells. Our studies reveal a novel mechanism by which LSD1 acts through the HDAC1- and MOF-mediated regulation of H4K16 acetylation to maintain the pluripotency of ES/EC cells.  相似文献   

6.
7.
细胞周期蛋白依赖性激酶6(cyclin dependent kinase 6,Cdk6)对胚胎早期发育有着重要的作用.然而,它在胚胎干(embryonic stem,ES)细胞中的生物学功能仍不清楚.在该研究中,我们运用RNA干扰技术和基因表达分析方法探索了Cdk6在小鼠胚胎干细胞中的功能及分子机制.结果表明:Cdk6的表达水平与小鼠ES细胞的自我更新密切相关.首先,维甲酸(RA)处理和白血病抑制因子(LIF)去除实验显示 ,随着ES细胞的分化,Cdk6的表达水平明显降低.更为重要的是,RNA干扰介导的Cdk6表达抑制导致ES细胞自我更新相关基因的显著下调,同时伴随细胞分化基因的表达激活,提示Cdk6对维持ES细胞自我更新至关重要.  相似文献   

8.
9.
Esophageal carcinoma is aggressive in nature and its prognosis is largely dependent on the degree of invasion. Histone deacetylase 6 (HDAC6), as the most unique member of HDACs family, has the positive activity to promote initiation and progression of various cancers via targeting multiple non‐histone proteins in cytoplasm. In this study, we found that HDAC6 was over‐expressed in three esophageal cancer cell lines (KYSE140, KYSE170, KYSE180) when compared to non‐carcinoma esophageal epithelial cell HEEC‐1. Then two HDAC6 specific siRNAs and HDAC6 inhibitor tubastatin A greatly suppressed KYSE140 and KYSE180 cells proliferation and migration, and the inhibition of cell motility was accompanied by elevated acetylation of α‐tubulin, a target of HDAC6. Consistently, the microtubulin skeleton was stabilized after HDAC6 knockdown or inhibition. In addition, acetylation status of HSP90, another HDAC6 target, was also increased towards HDAC6 knockdown or inhibition by co‐immunoprecipitation assay. Besides, co‐treatment of HSP90 inhibitor (PU‐H71) and HDAC6 inhibitor (tubastatin A) induced a stronger cell migration inhibition compared to administration of either drug alone. Furthermore, cell proliferation of KYSE140 and KYSE180 were also compromised in response to combination of HDAC6 and HSP90 inhibitors. Additionally, co‐administration of HSP90 inhibitor and HDAC6 inhibitor strongly inhibited tumor growth in vivo. Taken together, our results indicated that HDAC6 is a promising target by inhibiting HSP90 function in ESCC.  相似文献   

10.
Developing immunosuppressive therapies for autoimmune diseases comes with a caveat that immunosuppression may promote the risk of developing other conditions or diseases. We have previously shown that biolistic delivery of an expression construct encoding inducible HSP70 (HSP70i) with one amino acid modification in the dendritic cell (DC) activating moiety 435–445 (HSP70iQ435A) to mouse skin resulted in significant immunosuppressive activity of autoimmune vitiligo, associated with fewer tissue infiltrating T cells. To prepare HSP70iQ435A as a potential therapeutic for autoimmune vitiligo, in this study we evaluated whether and how biolistic delivery of HSP70iQ435A in mice affects anti-tumor responses. We found that HSP70iQ435A in fact supports anti-tumor responses in melanoma-challenged C57BL/6 mice. Biolistic delivery of the HSP70iQ435A-encoding construct to mice elicited significant anti-HSP70 titers, and anti-HSP70 IgG and IgM antibodies recognize surface-expressed and cytoplasmic HSP70i in human and mouse melanoma cells. A peptide scan revealed that the anti-HSP70 antibodies recognize a specific C-terminal motif within the HSP70i protein. The antibodies elicited surface CD107A expression among mouse NK cells, representative of antibody-mediated cellular cytotoxicity (ADCC), supporting the concept, that HSP70iQ435A-encoding DNA elicits a humoral response to the stress protein expressed selectively on the surface of melanoma cells. Thus, besides limiting autoimmunity and inflammation, HSP70iQ435A elicits humoral responses that limit tumor growth and may be used in conjunction with immune checkpoint inhibitors to not only control tumor but to also limit adverse events following tumor immunotherapy.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01229-x.  相似文献   

11.
Ascorbic acid has been reported to promote the differentiation of embryonic stem (ES) cells into cardiomyocytes; however, the specific functions of ascorbic acid have not been defined. A stable form of ascorbic acid, namely, l-ascorbic acid 2-phosphate (A2-P), significantly enhanced cardiac differentiation; this was assessed by spontaneous beating of cardiomyocytes and expression of cardiac-specific markers obtained from mouse ES cells. This effect of ascorbic acid was observed only when A2-P was present during the early phase of differentiation. Treatment with two types of collagen synthesis inhibitors, l-2-azetidine carboxylic acid and cis-4-hydroxy-d-proline, significantly inhibited the A2-P-enhanced cardiac differentiation, whereas treatment with the antioxidant N-acetyl cysteine showed no effect. These findings demonstrated that ascorbic acid enhances differentiation of ES cells into cardiomyocytes through collagen synthesis and suggest its potential in the modification of cardiac differentiation of ES cells.  相似文献   

12.
Several studies of stem cell-based gene therapy have indicated that long-lasting regeneration following vessel ischemia may be stimulated through VEGFA gene therapy and/or MSC transplantation for reduction of ischemic injury in limb ischemia and heart failure. The therapeutic potential of MSC transplantation can be further improved by genetically modifying MSCs with genes which enhance angiogenesis following ischemic injury. In the present study, we aimed to develop an approach in MSC-based therapy for repair and mitigation of ischemic injury and regeneration of damaged tissues in ischemic disease. HSP70 promoter-driven VEGFA expression was induced by resveratrol (RSV) in MSCs, and in combination with known RSV biological functions, the protective effects of our approach were investigated by using ex vivo aortic ring coculture system and a 3D scaffolds in vivo model. Results of this investigation demonstrated that HSP promoter-driven VEGFA expression in MSC increased approximately 2-fold over the background VEGFA levels upon HSP70 promoter induction by RSV. Exposure of HUVEC cells to medium containing MSC in which VEGFA had been induced by cis-RSV enhanced tube formation in the treated HUVEC cells. RSV-treated MSC cells differentiated into endothelial-like phenotypes, exhibiting markedly elevated expression of endothelial cell markers. These MSCs also induced aortic ring sprouting, characteristic of neovascular formation from pre-existing vessels, and additionally promoted neovascularization at the MSC transplantation site in a mouse model. These observations support a hypothesis that VEGFA expression induced by cis-RSV acting on the HSP70 promoter in transplanted MSC augments the angiogenic effects of stem cell gene therapy. The use of an inducible system also vastly reduces possible clinical risks associated with constitutive VEGFA expression.  相似文献   

13.
14.
Geldanamycin is an antitumor drug that binds HSP90 and induces a wide range of heat shock proteins, including HSP70s. In this study we report that the induction of HSP70s is dose-dependent in geldanamycin-treated human non-small cell lung cancer H460 cells. Analysis of the induction of HSP70s specific isoform using LC-ESI-MS/MS analysis and Northern blotting showed that HSP70-1/2 are the major inducible forms under geldanamycin treatment. Transactivation of hsp70-1/2 was determined by electrophoretic mobility-shift assay using heat shock element (HSE) as a probe. The signaling pathway mediators involved in hsp70-1/2 transactivation were screened by the kinase inhibitor scanning technique. Pretreatment with serine/threonine protein kinase inhibitors H7 or H8 blocked geldanamycin-induced HSP70-1/2, whereas protein kinase A inhibitor HA1004, protein kinase G inhibitor KT5823, and myosin light chain kinase inhibitor ML-7 had no effect. Furthermore, the protein kinase C (PKC)-specific inhibitor Ro-31-8425 and the Ca2+-dependent PKC inhibitor G?-6976 diminished geldanamycin-induced HSP70-1/2, suggesting an involvement of the PKC in the process. In addition, geldanamycin treatment causes a transient increase of intracellular Ca2+. Chelating intracellular Ca2+ with BAPTA-AM or depletion of intracellular Ca2+ store with A23187 or thapsigargin significantly decreased geldanamycin-transactivated HSP70-1/2 expression. Taken together, our results demonstrate that geldanamycin-induced specific HSP70-1/2 isoforms expression in H460 cells through signaling pathway mediated by Ca2+ and PKC.  相似文献   

15.
16.
17.
Foxp3(+) T-regulatory cells (Tregs) are key to immune homeostasis such that their diminished numbers or function can cause autoimmunity and allograft rejection. Foxp3(+) Tregs express multiple histone/protein deacetylases (HDACs) that regulate chromatin remodeling, gene expression, and protein function. Pan-HDAC inhibitors developed for oncologic applications enhance Treg production and Treg suppression function but have limited nononcologic utility given their broad actions and various side effects. We show, using HDAC6-deficient mice and wild-type (WT) mice treated with HDAC6-specific inhibitors, that HDAC6 inhibition promotes Treg suppressive activity in models of inflammation and autoimmunity, including multiple forms of experimental colitis and fully major histocompatibility complex (MHC)-incompatible cardiac allograft rejection. Many of the beneficial effects of HDAC6 targeting are also achieved by inhibition of the HDAC6-regulated protein heat shock protein 90 (HSP90). Hence, selective targeting of a single HDAC isoform, HDAC6, or its downstream target, HSP90, can promote Treg-dependent suppression of autoimmunity and transplant rejection.  相似文献   

18.
Effects of inhibitors of the heat shock protein 90 (HSP90) chaperone activity and inhibitors of the heat shock protein (HSP) expression on sensitivity of HeLa tumor cells to hyperthermia were studied. It was found that nanomolar concentrations of inhibitors of the HSP90 activity (17AAG or radicicol) slowed down the chaperone-dependent reactivation of a thermolabile reporter (luciferase) in heat-stressed HeLa cells and slightly enhanced their death following the incubation for 60 min at 43°C. The inhibitors of HSP90 activity stimulated de novo induction of additional chaperones (HSP70 and HSP27) that significantly increased intracellular HSP levels. Treatment of the cells with 17AAG or radicicol along with an inhibitor of the HSP induction (e.g. quercetin or triptolide, or NZ28) completely prevented the increase in the intracellular chaperone levels resulting from the inhibition of HSP90 activity and subsequent heating. Combination of all three treatments (inhibition of the HSP90 activity + inhibition of the HSP induction + heating at 43°C for 60 min) resulted in more potent inhibition of the reporter reactivation and a sharp (2–3-fold) increase in cell death. Such enhancement of the cytotoxicity may be attributed to the “chaperone deficiency” when prior to heat stress both the functional activity of constitutive HSP90 and the expression of additional (inducible) chaperones are blocked in the cells.  相似文献   

19.
The identity of embryonic stem cells (ESCs) is controlled by a set of pluripotency genes, including Oct4, Sox2, Nanog, and Fgf4. How their expression is repressed during differentiation and reactivated during reprogramming is largely unknown. Here, using mouse ESCs as well as F9 and P19 cells (mouse embryonal carcinoma cell lines, P19 being considered further differentiated than F9 cells) as models, we found that HDAC inhibitors elevated Fgf4 expression in P19 cells, but reduced it in F9 cells. We also observed that HDAC inhibitors enhanced the expression of Fgf4 and a subset of pluripotency genes in differentiated ESCs, but reduced their expression in undifferentiated and less differentiated ESCs. Mechanistically, we observed more HDAC1 recruitment and a weaker association of histone 4 lysine 5 acetylation at the Fgf4 enhancer in P19 cells compared to F9 cells. Additionally, we demonstrated the interaction between Sox2 and HDAC1 both in vitro and in vivo, implicating a possible role for Sox2 in the recruitment of HDAC1 to the Fgf4 enhancer. We also found that Nanog bound to the Fgf4 enhancer, and this binding was stronger in F9 cells, indicating the involvement of Nanog in the regulation of Fgf4 expression in undifferentiated and less differentiated pluripotent stem cells. This study uncovers an important role of HDAC1 and histone modifications in the repression of Fgf4 and perhaps other pluripotency genes during ESC differentiation. Our results also suggest that HDAC inhibitors may promote reprogramming partially through activating pluripotency genes at some intermediate stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号