首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Range-wide genetic variation of black spruce (Picea mariana) was studied using polymerase chain reaction-random fragment length polymorphism markers of the mitochondrial genome. Four polymorphic mitochondrial DNA (mtDNA) loci were surveyed and two or three alleles were detected at each locus, resulting in 10 multilocus mtDNA types or mitotypes. A significant subdivision of population genetic diversity was detected (GST = 0.671; NST = 0.726), suggesting low levels of gene flow among populations. The distribution of mitotypes was not random (NST > GST; P < 0.05) and revealed four partially overlapping zones, presumably representative of different glacial populations. Comparison of the genetic structure derived from mtDNA markers and the colonization paths previously deduced from the fossil and pollen records allow us to infer at least three southern and one northeastern glacial populations for black spruce. The patterns revealed in this study suggest that black spruce shares its biogeographical history with other forest-associated North American species.  相似文献   

2.
The Balkan Peninsula is one of three major European refugial areas. It has high biodiversity and endemism, but data on the age and origin of its fauna, especially endemics, are limited. Mitochondrial sequence data (COI and 16S genes) were used to study the population structure and phylogeography of the caddisfly Drusus croaticus and the phylogeny and divergence of seven other Drusus species, mostly range-restricted endemics of the Dinaric region of the Balkan Peninsula. The divergence of D. croaticus populations in Croatia and allopatric Drusus species in Bosnia dated to the Pleistocene, showing the importance of this time period for the origin and diversification of Balkan endemic taxa. The divergence of more distantly related species dated to the Late Miocene/Early Pliocene. Population genetic and phylogeographic analysis of 115 individuals from 11 populations of D. croaticus revealed a high level of genetic differentiation and absence of gene flow between populations separated by more than 10 km. The existence of allopatrically fragmented lineages in D. croaticus and the endemic Bosnian species is most likely the result of long-term isolation in multiple microrefugia, probably due to the specific habitat requirements and life-history traits of Drusinae coupled with the topographic complexity and historical changes in geomorphology of the region. Overall, these findings shed light on the processes generating the high genetic complexity of this refugial region that parallels the 'refugia within refugia' pattern widely reported from the Iberian refugium.  相似文献   

3.
Climatic oscillations throughout the Pleistocene combined with geological and topographic complexity resulted in extreme habitat heterogeneity along the Atlantic coast of Brazil. Inferring how these historic landscape patterns have structured the current diversity of the region's biota is important both for our understanding of the factors promoting diversification, as well as the conservation of this biodiversity hotspot. Here we evaluate potential historical scenarios of diversification in the Atlantic Coastal Forest of Brazil by investigating the population genetic structure of a frog endemic to the region. Using mitochondrial and nuclear sequences, we generated a Bayesian population-level phylogeny of the Thoropa miliaris species complex. We found deep genetic divergences among five geographically distinct clades. Southern clades were monophyletic and nested within paraphyletic northern clades. Analyses of historical demographic patterns suggest an overall north to south population expansion, likely associated with regional differences in habitat stability during the Pliocene and early Pleistocene. However, genetic structure among southern populations is less pronounced and likely represents more recent vicariant events resulting from Holocenic sea-level oscillations. Our analyses corroborate that the Atlantic Coastal Forest has been a biogeographically dynamic landscape and suggest that the high diversity of its fauna and flora resulted from a combination of climatic and geologic events from the Pliocene to the present.  相似文献   

4.
The phylogeography of Atlantic brown trout ( Salmo trutta ) was analysed using mitochondrial DNA control region complete sequences of 774 individuals from 57 locations. Additionally, the available haplotype information from 100 published populations was incorporated in the analysis. Combined information from nested clade analysis, haplotype trees, mismatch distributions, and coalescent simulations was used to characterize population groups in the Atlantic basin. A major clade involved haplotypes assigned to the Atlantic (AT) lineage, but another major clade should be considered as a distinct endemic lineage restricted to the Iberian Peninsula. The phylogeography of the Atlantic populations showed the mixed distribution of several Atlantic clades in glaciated areas of Northern Europe, whereas diverged haplotypes dominated the coastal Iberian rivers. Populations inhabiting the Atlantic rivers of southern France apparently contributed to postglacial colonization of northern basins, but also comprised the source of southern expansions during the Pleistocene.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 904–917.  相似文献   

5.
Jack pine (Pinus banksiana Lamb.) is a broadly distributed North American conifer and its current range was covered by the Laurentian ice sheet during the last glacial maximum. To infer about the history and postglacial colonization of this boreal species, range-wide genetic variation was assessed using a new and highly variable minisatellite-like marker of the mitochondrial genome. Among the 543 trees analysed, 14 distinct haplotypes were detected, which corresponded to different repeat numbers of the 32-nucleotide minisatellite-like motif. Several haplotypes were rare with limited distribution, suggesting recent mutation events during the Holocene. At the population level, an average of 2.6 haplotypes and a mean haplotype diversity (H) of 0.328 were estimated. Population subdivision of genetic diversity was quite high with G(ST) and R(ST) values of 0.569 and 0.472, respectively. Spatial analyses identified three relatively homogeneous groups of populations presumably representative of genetically distinct glacial populations, one west and one east of the Appalachian Mountains in the United States and a third one presumably on the unglaciated northeastern coastal area in Canada. These results indicate the significant role of the northern part of the US Appalachian Mountains as a factor of vicariance during the ice age. A fourth distinct group of populations was observed in central Québec where the continental glacier retreated last. It included populations harbouring haplotypes present into the three previous groups, and it had higher level of haplotype diversity per population (H = 0.548) and lower population differentiation (G(ST) = 0.265), which indicates a zone of suture or secondary contact between the migration fronts of the three glacial populations. Introgression from Pinus contorta Dougl. var. latifolia Engelm. was apparent in one western population from Alberta. Altogether, these results indicate that the mitochondrial DNA variation of jack pine is geographically highly structured and it correlates well with large-scale patterns emerging from recent phylogeographical studies of other tree boreal species in North America.  相似文献   

6.
Phylogeographic studies are often focused on temperate European species with relict footholds in the Mediterranean region. Past climatic oscillations usually induced range contractions and expansions from refugial areas located in southern Europe, and spatial distribution of genetic diversity show that northward expansions were usually pioneer-like. Actually, few studies have focused on circum-Mediterranean species, which probably were not influenced in the same way by climatic oscillations. We present the phylogeography of the bark beetle Tomicus destruens, which is restricted to the whole Mediterranean basin and the Atlantic coasts of North Africa and Portugal. We systematically sequenced 617 bp of the mitochondrial genes COI and COII for 42 populations (N = 219). Analysis revealed 53 haplotypes geographically structured in two clades, namely eastern and western clades, that diverged during the Pleistocene. A contact zone was identified along the Adriatic coast of Italy. Interestingly, we found contrasting levels of genetic structure within each clade. The eastern group was characterized by a significant phylogeographic pattern and low levels of gene flow, whereas the western group barely showed a spatial structure in haplotype distribution. Moreover, the main pine hosts were different between groups, with the Aleppo-brutia complex in the east and the maritime pine in the west. Potential roles of host species, climatic parameters and geographical barriers are discussed and the phylogeographic patterns are compared to classical models of postglacial recolonization in Europe.  相似文献   

7.
Phylogeography has provided a new approach to the analysis of the postglacial history of a wide range of taxa but, to date, little is known about the effect of glacial periods on the marine biota of Europe. We have utilized a combination of nuclear, plastid and mitochondrial genetic markers to study the biogeographic history of the red seaweed Palmaria palmata in the North Atlantic. Analysis of the nuclear rDNA operon (ITS1-5.8S-ITS2), the plastid 16S-trnI-trnA-23S-5S, rbcL-rbcS and rpl12-rps31-rpl9 regions and the mitochondrial cox2-3 spacer has revealed the existence of a previously unidentified marine refugium in the English Channel, along with possible secondary refugia off the southwest coast of Ireland and in northeast North America and/or Iceland. Coalescent and mismatch analyses date the expansion of European populations from approximately 128,000 BP and suggest a continued period of exponential growth since then. Consequently, we postulate that the penultimate (Saale) glacial maximum was the main event in shaping the biogeographic history of European P. palmata populations which persisted throughout the last (Weichselian) glacial maximum (c. 20,000 BP) in the Hurd Deep, an enigmatic trench in the English Channel.  相似文献   

8.
9.
Vicariance and dispersal can strongly influence population genetic structure and allopatric speciation, but their importance in the origin of marine biodiversity is unresolved. In transitional estuarine environments, habitat discreteness and dispersal barriers could enhance divergence and provide insight to evolutionary mechanisms underlying marine and freshwater biodiversity. We examined this by assessing phylogeographic structure in the widespread amphipod Gammarus tigrinus across 13 estuaries spanning its northwest Atlantic range from Quebec to Florida. Mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 1 phylogenies supported deep genetic structure consistent with Pliocene separation and cryptic northern and southern species. This break occurred across the Virginian-Carolinian coastal biogeographic zone, where an oceanographic discontinuity may restrict gene flow. Ten estuarine populations of the northern species occurred in four distinct clades, supportive of Pleistocene separation. Glaciation effects on genetic structure of estuarine populations are largely unknown, but analysis of molecular variance (AMOVA) supported a phylogeographic break among clades in formerly glaciated versus nonglaciated areas across Cape Cod, Massachusetts. This finding was concordant with patterns in other coastal species, though there was no significant relationship between latitude and genetic diversity. This supports Pleistocene vicariance events and divergence of clades in different northern glacial refugia. AMOVA results and private haplotypes in most populations support an allopatric distribution across estuaries. Clade mixture zones are consistent with historical colonization and human-mediated transfer. An isolation-by-distance model of divergence was detected after we excluded a suspected invasive haplotype in the St. Lawrence estuary. The occurrence of cryptic species and divergent population structure support limited dispersal, dispersed habitat distribution, and historical factors as important determinants of estuarine speciation and diversification.  相似文献   

10.
The Pyrenean region exhibits high levels of endemism suggesting a major contribution to the phylogeography of European species. But, to date, the role of the Pyrenees and surrounding areas as a glacial refugium for temperate species remains poorly explored. In the current study, we investigated the biogeographic role of the Pyrenean region through the analyses of genetic polymorphism and morphology of a typical forest-dwelling small mammal, the bank vole ( Myodes glareolus ). Analyses of the mitochondrial cytochrome b gene and the third upper molar (M3) show a complex phylogeographic structure in the Pyrenean region with at least three distinct lineages: the Western European, Spanish and Basque lineages. The Basque lineage in the northwestern (NW) Pyrenees was identified as a new clearly differentiated and geographically localized bank vole lineage in Europe. The average M3 shape of Basque bank voles suggests morphological differentiation but also restricted genetic exchanges with other populations. Our genetic and morphological results as well as palaeo-environmental and fossils records support the hypothesis of a new glacial refugium in Europe situated in the NW Pyrenees. The permissive microclimatic conditions that prevailed for a long time in this region may have allowed the survival of temperate species, including humans. Moreover, local differentiation around the Pyrenees is favoured by the opportunity for populations to track the shift of the vegetation belt in altitude rather than in latitude. The finding of the Basque lineage is in agreement with the high level of endemic taxa reported in the NW Pyrenees.  相似文献   

11.
A major goal of phylogeographic analysis using molecular markers is to understand the ecological and historical variables that influence genetic diversity within a species. Here, we used sequences of the mitochondrial Cox1 gene and nuclear internal transcribed spacer to reconstruct its phylogeography and demographic history of the intertidal red seaweed Chondrus ocellatus over most of its geographical range in the Northwest Pacific. We found three deeply separated lineages A, B and C, which diverged from one another in the early Pliocene–late Miocene (c. 4.5–7.7 Ma). The remarkably deep divergences, both within and between lineages, appear to have resulted from ancient isolations, accelerated by random drift and limited genetic exchange between regions. The disjunct distributions of lineages A and C along the coasts of Japan may reflect divergence during isolation in scattered refugia. The distribution of lineage B, from the South China Sea to the Korean Peninsula, appears to reflect postglacial recolonizations of coastal habitats. These three lineages do not coincide with the three documented morphological formae in C. ocellatus, suggesting that additional cryptic species may exist in this taxon. Our study illustrates the interaction of environmental variability and demographic processes in producing lineage diversification in an intertidal seaweed and highlights the importance of phylogeographic approaches for discovering cryptic marine biodiversity.  相似文献   

12.
The phylogeographic architecture of the common vole, Microtus arvalis, has been well‐studied using mitochondrial DNA and used to test hypotheses relating to glacial refugia. The distribution of the five described cytochrome b (cyt b) lineages in Europe west of Russia has been interpreted as a consequence of postglacial expansion from both southern and central European refugia. A recently proposed competing model suggests that the ‘cradle’ of the M. arvalis lineages is in western central Europe from where they dispersed in different directions after the Last Glacial Maximum. In the present study, we report a new cyt b lineage of the common vole from the Balkans that is not closely related to any other lineage and whose presence might help resolve these issues of glacial refugia. The Balkan phylogroup occurs along the southern distributional border of M. arvalis in central and eastern Bosnia and Herzegovina, Montenegro, and eastern Serbia. Further north and west in Slovenia, Bosnia and Herzegovina, and Serbia, common voles belong to the previously‐described Eastern lineage, whereas both lineages are sympatric in one site in Bosnia and Herzegovina. The Balkan phylogroup most reasonably occupied a glacial refugium already known for various Balkan endemic species, in contrast to the recently proposed model. South‐east Europe is an absolutely crucial area for understanding the postglacial colonization history of small mammals in Europe and the present study adds to the very few previous detailed phylogeographic studies of this region. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 788–796.  相似文献   

13.
Understanding the historical framework in which species interactions have diversified across landscapes may help to partition the effects of vicariance and geographically variable selection in shaping the geographical mosaic of coevolving species. We used phylogeographical analyses of the pollinating seed parasite Greya politella (Lepidoptera: Prodoxidae) to define the historical processes that may have structured interactions of this species with its host plants across major biogeographical breaks in western North America. Using 648 bp of cytochrome oxidase I and amplified fragment length polymorphisims, we identified deep genetic breaks among some populations consistent with some definitions of cryptic species. A combination of phylogenetic and population genetic approaches indicates that different historical processes may have structured G. politella genetic diversity in four regions: northern Pacific Northwest, southern Oregon, southern Sierra Nevada, and the remainder of California. The northern Pacific Northwest had high genetic diversity likely due to glacial refugia and subsequent spatial expansion, concordant with some other taxa. Populations in southern Oregon possessed unique, closely related haplotypes with restricted gene flow, possibly indicating a long-standing set of populations in this endemic-rich region. Analyses of California populations showed evidence of restricted gene flow and spatial expansion with many closely related haplotypes that occupy a broad geographical range. Southern Sierra Nevada populations were genetically distinct and highly diverse, possibly due to a localized glacial refugium. Together, these results suggest that vicariance and population expansion, possibly in combination with geographically variable selection, have shaped the diversification of G. politella and its interactions with its host plants.  相似文献   

14.
The distribution pattern of mtDNA haplotypes in distinct populations of the glacial relict crustacean Saduria entomon was examined to assess phylogeographic relationships among them. Populations from the Baltic, the White Sea and the Barents Sea were screened for mtDNA variation using PCR‐based RFLP analysis of a 1150 bp fragment containing part of the CO I and CO II genes. Five mtDNA haplotypes were recorded. An analysis of geographical heterogeneity in haplotype frequency distributions revealed significant differences among populations. The isolated populations of S. entomon have diverged since the retreat of the last glaciation. The geographical pattern of variation is most likely the result of stochastic (founder effect, genetic drift) mechanisms and suggests that the haplotype differentiation observed is probably older than the isolation of the Baltic and Arctic seas.  相似文献   

15.
The Mediterranean turbot Psetta maxima consists of two main genetically distinct lineages (western Mediterranean and 'eastern secluded Mediterranean' basins) as investigated by mitochondrial DNA analysis. Within the latter lineage, most haplotypes from the Sea of Azov were endemic and more than half of them derived from a single ancestral haplotype shared among all the eastern Mediterranean areas. There was no relation between morphotype variation in bony tubercles and mitochondrial genealogy.  相似文献   

16.
We investigated the geographical patterns of genetic diversity in the Italian treefrog through sequence analysis of a mitochondrial cytochrome b gene fragment. Three main mitochondrial lineages were identified, distributed in northern, central and southern Italy, respectively. Their divergence appears indicative of a split time largely predating Late Pleistocene climatic oscillations, and syntopy between them was only observed in the geographically intermediate populations. The historical demographic reconstructions suggest that in both northern and central Italy, an expansion occurred during the last major glacial phase, when a vast widening of the lowland habitats followed the glaciation-induced fall of the sea level. Instead, in southern Italy an expansion event likely followed the end of the last glaciation, although the inference of expansion appears less reliable for the southern clade than for the others. Within this geographical area, a sharp phylogeographic discontinuity separated peninsular from Sicilian populations, and the overall pattern of diversity suggests that the latter derived from a recent colonization of the island, probably through a Late Pleistocene land bridge. Phylogenetic, phylogeographic and historical demographic analyses thus concur in delineating a scenario of multiple refugia, with four groups of populations which survived the last glacial-interglacial cycles in at least three distinct refugia arranged along peninsular Italy, and have recently come into contact following range expansions. Therefore, these results support the hypothesis that a plethora of microevolutionary processes, rather than the prolonged stability of populations, were mainly responsible for shaping the patterns of diversity within this major biodiversity hotspot.  相似文献   

17.
Chloroplast DNA (cpDNA) haplotype variation is compared among alpine and prairie/montane species of Packera from a region in southwestern Alberta that straddles the boundary of Pleistocene glaciation. The phylogeny of the 15 haplotypes identified reveals the presence of two groups: one generally found in coastal and northern species and the other from species in drier habitats. The presence of both groups in all four species and most populations from southwestern Alberta is evidence of past hybridization involving species or lineages that may no longer be present in the region. With the exception of the alpine P. subnuda (phiST = 1.0), interpopulational subdivision of haplotype variation is low (phiST < 0.350), suggesting that interpopulational gene flow is high. However, based on haplotype distribution patterns, we propose that Pleistocene hybridization and incomplete lineage sorting have resulted in reduced subdivision of interpopulational variation so that gene flow may not be as high as indicated. Drift has been more important in the alpine species populations, especially P. subnuda.  相似文献   

18.
This study details the phylogeographic pattern of the bank vole, Clethrionomys glareolus, a European rodent species strongly associated with forest habitat. We used sequences of 1011 base pairs of the mitochondrial DNA cytochrome b gene from 207 bank voles collected in 62 localities spread throughout its distribution area. Our results reveal the presence of three Mediterranean (Spanish, Italian and Balkan) and three continental (western, eastern and 'Ural') phylogroups. The endemic Mediterranean phylogroups did not contribute to the post-glacial recolonization of much of the Palaearctic range of species. Instead, the major part of this region was apparently recolonized by bank voles that survived in glacial refugia in central Europe. Moreover, our phylogeographic analyses also reveal differentiated populations of bank voles in the Ural mountains and elsewhere, which carry the mitochondrial DNA of another related vole species, the ruddy vole (Clethrionomys rutilus). In conclusion, this study demonstrates a complex phylogeographic history for a forest species in Europe which is sufficiently adaptable that, facing climate change, survives in relict southern and northern habitats. The high level of genetic diversity characterizing vole populations from parts of central Europe also highlights the importance of such regions as a source of intraspecific genetic biodiversity.  相似文献   

19.
We surveyed population-level sequence variation in part of the mitochondrial control region for three species including eight subspecies of Cepphus guillemots (Charadriiformes: Alcidae) to test specific predictions about mechanisms of population differentiation. We found that sequences of spectacled guillemots (C. carbo) were more closely related to those of pigeon guillemots (C. columba; both found in the Pacific Ocean) than to those of black guillemots (C. grylle; Arctic and Atlantic Oceans), despite dissimilarities in plumage between spectacled guillemots and the other species. Distributions of species and timing of divergence events suggest that speciation involved allopatric and microallopatric populations isolated by Pleistocene glaciers. Control region sequences were significantly differentiated among populations within species and suggest that gene flow is low; however, populations are probably not in genetic equilibrium, so these results probably reflect historical isolation of colonies. In contrast, phylogenetic relationships among sequences within species were poorly resolved, probably because of a combination of incomplete lineage sorting and contemporary gene flow. Indices of genetic diversity provided no suggestion of recent bottlenecks in most populations, although two populations apparently underwent recent severe bottlenecks. Genetic divergence among populations was not correlated with geographic distance, which argues against isolation by distance. Results of these analyses, combined with breeding distributions and timing of divergence events, suggest that populations diverged during isolation in glacial refugia. Our results are consistent with earlier hypotheses posed by Storer and Udvardy.  相似文献   

20.
The coastal South American species Cyprinodon dearborni contains two lineages distinct at both mitochondrial and nuclear loci. One appears to be a long-term South American endemic, whereas the other is a more recent colonizer related to the widespread Cyprinodon variegatus .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号