首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plant Protein Phosphorylation, 12-15 September 2001, Vienna, Austria.  相似文献   

3.
A single type of reversible protein-phosphorylating system, the ATP-dependent protein kinase/phosphatase system, is employed in signal transduction in eukaryotes. By contrast, recent work has revealed that three types of protein-phosphorylating systems mediate signal transduction in bacteria. These systems are (1) classical protein kinase/phosphatase systems, (2) sensor-kinase/response-regulator systems, and (3) the multifaceted phosphoenolpyruvate-dependent phosphotransferase system. Physiological, structural, and mechanistic aspects of these three evolutionarily distinct systems are discussed in the papers of this written symposium. © 1993 Wiley-Liss, Inc.  相似文献   

4.
5.
Bacteria use a strategy referred to as two-component signal transduction to sense a variety of stimuli and initiate an appropriate response. Signal processing begins with proteins referred to as histidine kinases. In most cases, these are membrane-bound receptors that respond to environmental cues. Histidine kinases use ATP as a phosphodonor to phosphorylate a conserved histidine residue. Subsequent transfer of the phosphoryl group to a conserved aspartyl residue in the cognate response regulator results in an appropriate output. Recent structural studies of activated (phosphorylated) response regulators and their aspartate-bearing regulatory domains have provided insight into the links between the chemistry and biology of these ubiquitous regulatory proteins. Chemical aspects of their function appear to generalize broadly to enzymes that adopt a phosphoaspartate intermediate.  相似文献   

6.
Role of protein phosphorylation in neuronal signal transduction   总被引:23,自引:0,他引:23  
Protein phosphorylation is involved in the regulation of a wide variety of physiological processes in the nervous system. Studies in which purified protein kinases or kinase inhibitors have been microinjected into defined cells while a specific response is monitored have demonstrated that protein phosphorylation is both necessary and sufficient to mediate responses of excitable cells to extracellular signals. The precise molecular mechanisms involved in neuronal signal transduction processes can be further elucidated by identification and characterization of the substrate proteins for the various protein kinases. The roles of three such substrate proteins in signal transduction are described in this article: 1) synapsin I, whose phosphorylation increases neurotransmitter release and thereby modulates synaptic transmission presynaptically; 2) the nicotinic acetylcholine receptor, whose phosphorylation increases its rate of desensitization and thereby modulates synaptic transmission postsynaptically; and 3) DARPP-32, whose phosphorylation converts it to a protein phosphatase inhibitor and which thereby may mediate interactions between dopamine and other neurotransmitter systems. The characterization of the large number of additional phosphoproteins that have been found in the nervous system should elucidate many additional molecular mechanisms involved in signal transduction in neurons.  相似文献   

7.
A highly complex set of interactions are responsible for the perception and transduction of signals in living cells. It is likely that a number of fundamental principles of signalling mechanisms are of early evolutionary origin, have been highly conserved and are shared by apparently disparate organisms. Possible clues to the biochemical and molecular basis of plant signalling might thus be obtained from research carried out on other eukaryotes. Like mammalian cells, plant cells have been found to possess a phosphoinositide system and also make extensive use of phosphorylation and dephosphorylation cascades. The potential role of these mechanisms in plant cell signalling is reviewed.  相似文献   

8.
9.
Protein tyrosine dephosphorylation and signal transduction   总被引:13,自引:0,他引:13  
The protein tyrosine phosphatases comprise a family of enzymes that specifically dephosphorylate tyrosyl residues. Determination of the amino acid sequence of a major low molecular mass form isolated from human placenta (PTPase 1B) provided the basis for the first identification of transmembrane proteins that bear intracellular phosphatase domains. The existence of such molecules, bearing the hallmarks of receptors, raises the exciting possibility of a novel mechanism of signal transduction in which the early events involve the ligand-induced dephosphorylation of tyrosyl residues in proteins.  相似文献   

10.
11.
Role of lipid-mediated signal transduction in bacterial internalization   总被引:6,自引:3,他引:6  
Receptor-mediated phagocytosis normally represents an important first line of immune defence. Invading microbes are internalized into phagosomes and are typically killed by exposure to a battery of microbicidal agents. To some intracellular pathogens, however, receptor-mediated phagocytosis represents an opportunity to access a protected niche within the host cell. Another type of intracellular pathogen, including Salmonella enterica serovar Typhimurium and Shigella flexneri, invade host cells in a more direct manner. These pathogens deliver effectors into the host cell via a type III secretion apparatus, initiating a ruffling response that leads to their uptake into intracellular vacuoles. Recent studies have demonstrated the importance of lipid signal transduction events in the uptake of pathogenic bacteria by both receptor-mediated phagocytosis and type III secretion-mediated invasion. In this review we highlight some of these discoveries, with a focus on phospholipid-dependent signalling events.  相似文献   

12.
The power and scope of chemical synthesis offer considerable opportunities to broaden the lexicon of chemical tools that can be implemented for the study of complex biological systems. To investigate individual signaling proteins and pathways, chemical tools provide a powerful complement to existing genetic, chemical genetic and immunologic methods. In particular, understanding phosphorylation-mediated signaling in real time yields important information about the regulation of cellular function and insights into the origin of disease. Recent advances in the development of photolabile caged analogs of bioactive species and fluorescence-based sensors of protein kinase activities are useful for investigating protein phosphorylation and the roles of phosphoproteins. Photolabile caged analogs allow spatial and temporal control over the release of a compound, while fluorescence-based sensors allow the real-time visualization of kinase activity. Here, we discuss recent advances that have increased the specificity and availability of these tools.  相似文献   

13.
14.
Protein phosphorylation in the bacterial chemotaxis system   总被引:2,自引:0,他引:2  
M I Simon  K A Borkovich  R B Bourret  J F Hess 《Biochimie》1989,71(9-10):1013-1019
Bacterial chemotaxis involves the detection of changes in concentration of specific chemicals in the environment of the cell as a function of time. This process is mediated by a series of cell surface receptors that interact with and activate intracellular protein phosphorylation. Five cytoplasmic proteins essential for chemotaxis have been shown to be involved in a coupled system of protein phosphorylation. Ligand binding to cell surface receptors affects the rate of autophosphorylation of the CheA protein. In the absence of an attractant bound to receptor and in the presence of the CheW protein, the rate of CheA autophosphorylation is markedly increased. Phosphorylated CheA can transfer phosphate to the CheY or CheB proteins; phosphorylation of these "effector" proteins may increase their activity. The CheY protein is thought to regulate flagellar rotation and thus control swimming behavior. The CheB protein modifies the cell surface receptor and thus regulates receptor function. Finally, another chemotaxis protein, CheZ, acts to specifically dephosphorylate CheY-phosphate. This system shows marked similarity to the 2-component sensor-regulator systems found to control specific gene expression in a variety of bacteria.  相似文献   

15.
How specificity and reversibility in tyrosine nitration are defined biologically in cellular systems is poorly understood. As more investigations identify proteins involved in cell regulatory pathways in which only a small fraction of that protein pool is modified by nitration to affect cell function, the mechanisms of biological specificity and reversal should come into focus. In this review experimental evidence has been summarized to suggest that tyrosine nitration is a highly selective modification and under certain physiological conditions fulfills the criteria of a physiologically relevant signal. It can be specific, reversible, occurs on a physiological time scale, and, depending on a target, can result in either activation or inhibition.  相似文献   

16.
Lu NH  Gao PZ  Gao ZH 《生理科学进展》2007,38(4):369-372
蛋白质硝基酪氨酸作为一氧化氮(NO)衍生的蛋白质翻译后修饰产物,被认为是许多生理和病理条件下的生物标志物。本文综述了蛋白质酪氨酸硝化可以作为信号调节元件与已知的信号途径相关,包括NO、蛋白质酪氨酸激酶、丝裂原激活蛋白激酶、T-淋巴细胞、转录因子NF-κB、Ca2 等。同时也论证了蛋白质酪氨酸硝化作为信号转导元件的可能性。  相似文献   

17.
In the Drosophila visual cascade, the transient receptor potential (TRP) calcium channel, phospholipase Cbeta (no-receptor-potential A), and an eye-specific isoform of protein kinase C (eye-PKC) comprise a multimolecular signaling complex via their interaction with the scaffold protein INAD. Previously, we showed that the interaction between INAD and eye-PKC is a prerequisite for deactivation of a light response, suggesting eye-PKC phosphorylates proteins in the complex. To identify substrates of eye-PKC, we immunoprecipitated the complex from head lysates using anti-INAD antibodies and performed in vitro kinase assays. Wild-type immunocomplexes incubated with [(32)P]ATP revealed phosphorylation of TRP and INAD. In contrast, immunocomplexes from inaC mutants missing eye-PKC, displayed no phosphorylation of TRP or INAD. We also investigated protein phosphatases that may be involved in the dephosphorylation of proteins in the complex. Dephosphorylation of TRP and INAD was partially suppressed by the protein phosphatase inhibitors okadaic acid, microcystin, and protein phosphatase inhibitor-2. These phosphatase activities were enriched in the cytosol of wild-type heads, but drastically reduced in extracts prepared from glass mutants, which lack photoreceptors. Our findings indicate that INAD functions as RACK (receptor for activated PKC), allowing eye-PKC to phosphorylate INAD and TRP. Furthermore, dephosphorylation of INAD and TRP is catalyzed by PP1/PP2A-like enzymes preferentially expressed in photoreceptor cells.  相似文献   

18.
Bacterial two-component systems (TCS) are key signal transduction networks regulating global responses to environmental change. Environmental signals may modulate the phosphorylation state of sensor kinases (SK). The phosphorylated SK transfers the phosphate to its cognate response regulator (RR), which causes physiological response to the signal. Frequently, the SK is bifunctional and, when unphosphorylated, it is also capable of dephosphorylating the RR. The phosphatase activity may also be modulated by environmental signals. Using the EnvZ/OmpR system as an example, we constructed mathematical models to examine the steady-state and kinetic properties of the network. Mathematical modelling reveals that the TCS can show bistable behaviour for a given range of parameter values if unphosphorylated SK and RR form a dead-end complex that prevents SK autophosphorylation. Additionally, for bistability to exist the major dephosphorylation flux of the RR must not depend on the unphosphorylated SK. Structural modelling and published affinity studies suggest that the unphosphorylated SK EnvZ and the RR OmpR form a dead-end complex. However, bistability is not possible because the dephosphorylation of OmpR approximately P is mainly done by unphosphorylated EnvZ. The implications of this potential bistability in the design of the EnvZ/OmpR network and other TCS are discussed.  相似文献   

19.
Mithoe SC  Menke FL 《Phytochemistry》2011,72(10):997-1006
Plants and animal cells use intricate signaling pathways to respond to a diverse array of stimuli. These stimuli include signals from environment, such as biotic and abiotic stress signals, as well as cell-to-cell signaling required for pattern formation during development. The transduction of the signal often relies on the post-translational modification (PTM) of proteins. Protein phosphorylation in eukaryotic cells is considered to be a central mechanism for regulation and cellular signaling. The classic view is that phosphorylation of serine (Ser) and threonine (Thr) residues is more abundant, whereas tyrosine (Tyr) phosphorylation is less frequent. This review provides an overview of the progress in the plant phosphoproteomics field and how this progress has lead to a re-evaluation of the relative contribution of tyrosine phosphorylation to the plant phosphoproteome. In relation to this appreciated contribution of tyrosine phosphorylation we also discuss some of the recent progress on the role of tyrosine phosphorylation in plant signal transduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号