首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoplasmic male sterility (CMS) is a maternally inherited trait that causes dysfunctions in pollen and anther development. CMS is caused by the interaction between nuclear and mitochondrial genomes. A product of a CMS-causing gene encoded by the mitochondrial genome affects mitochondrial function and the regulation of nuclear genes, leading to male sterility. In contrast, the RESTORER OF FERTILITY gene (Rf gene) in the nuclear genome suppresses the expression of the CMS-causing gene and restores male fertility. An alloplasmic CMS line is often bred as a result of nuclear substitution, which causes the removal of functional Rf genes and allows the expression of a CMS-causing gene in mitochondria. The CMS/Rf system is an excellent model for understanding the genetic interactions and cooperative functions of mitochondrial and nuclear genomes in plants, and is also an agronomically important trait for hybrid seed production. In this review article, pollen and anther phenotypes of CMS, CMS-associated mitochondrial genes, Rf genes, and the mechanism that causes pollen abortion and its agronomical application for rice are described.  相似文献   

2.
3.
A rice nuclear gene, Rf-1, restores the pollen fertility disturbed by the BT-type male sterile cytoplasm, and is widely used for commercial seed production of japonica hybrid varieties. Genomic fragments carrying Rf-1 were identified by conducting chromosome walking and a series of complementation tests. Isolation and analysis of cDNA clones corresponding to the fragments demonstrated that Rf-1 encodes a mitochondrially targeted protein containing 16 repeats of the 35-aa pentatricopeptide repeat (PPR) motif. Sequence analysis revealed that the recessive allele, rf-1, lacks one nucleotide in the putative coding region, presumably resulting in encoding a truncated protein because of a frame shift. Rice Rf-1 is the first restorer gene isolated from cereal crops that has the property of reducing the expression of the cytoplasmic male sterility (CMS)-associated mitochondrial gene like many other restorer genes. The present findings may facilitate not only elucidating the mechanisms of male sterility by the BT cytoplasm and its restoration by Rf-1 but also isolating other restorer genes from cereal crops, especially rice.  相似文献   

4.
植物胞质雄性不育及育性恢复的分子机制研究进展(综述)   总被引:3,自引:0,他引:3  
本文从与雄性不育有关的线粒体基因引起雄性不育的机理、雄性不育育性恢复机制以及育性恢复基因的克隆等方面,介绍国内外对植物细胞质雄性不育分子机理的研究进展,并对今后的研究进行讨论。  相似文献   

5.
Cytoplasmic male sterility (CMS) is an important agricultural trait characterized by lack of functional pollen, and caused by ectopic and defective mitochondrial gene expression. The pollen function in CMS plants is restored by the presence of nuclear‐encoded restorer of fertility (Rf) genes. Previously, we cloned Rf2, which restores the fertility of Lead Rice (LD)‐type CMS rice. However, neither the function of Rf2 nor the identity of the mitochondrial gene causing CMS has been determined in LD–CMS rice. Here, we show that the mitochondrial gene orf79 acts as a CMS‐associated gene in LD–CMS rice, similar to its role in BT–CMS rice originating from Chinsurah Boro II, and Rf2 weakly restores fertility in BT–CMS rice. We also show that RF2 promotes degradation of atp6–orf79 RNA in a different manner from that of RF1, which is the Rf gene product in BT–CMS rice. The amount of ORF79 protein in LD–CMS rice was one‐twentieth of the amount in BT–CMS rice. The difference in ORF79 protein levels probably accounts for the mild and severe pollen defects in LD–CMS and BT–CMS rice, respectively. In the presence of Rf2, accumulation of ORF79 was reduced to almost zero and 25% in LD–CMS and BT–CMS rice, respectively, which probably accounts for the complete and weak fertility restoration abilities of Rf2 in LD–CMS and BT–CMS rice, respectively. These observations indicate that the amount of ORF79 influences the pollen fertility in two strains of rice in which CMS is induced by orf79.  相似文献   

6.
A class of nuclear genes termed "restorers of fertility" (Rf) acts to suppress the expression of abnormal mitochondrial genes associated with cytoplasmic male sterility (CMS). In petunia, both the nuclear Rf gene and mitochondrial CMS-associated gene have previously been identified. The CMS-associated gene is an aberrant chimera in which portions of several mitochondrially encoded genes are fused to an unknown reading frame. The dominant Rf allele reduces the CMS-associated protein to nearly undetectable levels and alters the RNA population derived from the CMS locus, but its mechanism of action has not been determined. The petuniaRf gene is a member of the pentatricopeptide repeat gene family (PPR), an unusually large gene family in Arabidopsis (approximately 450 genes) compared with yeast (five genes) and mammalian genomes (six genes). The PPR gene family has been implicated in the control of organelle gene expression. To gain insight into the mode of action of PPR genes, we generated transgenic petunia plants expressing a functional tagged version of Rf. Analysis of the restorer protein revealed that it is part of a soluble mitochondrial inner-membrane-associated, RNase-sensitive high-molecular-weight protein complex. The complex is associated with mRNA derived from the CMS locus.  相似文献   

7.
Rice with LD-type cytoplasmic male sterility (CMS) possesses the cytoplasm of ‘Lead Rice’ and its fertility is recovered by a nuclear fertility restorer gene Rf1. Rf1 promotes processing of a CMS-associated mitochondrial RNA of atp6–orf79, which consists of atp6 and orf79, in BT-CMS with the cytoplasm of ‘Chinsurah Boro II’. In this study, we found that LD-cytoplasm contained a sequence variant of orf79 downstream of atp6. Northern blot analysis showed that atp6–orf79 RNA of LD-cytoplasm was co-transcribed and was processed in the presence of Rf1 in the same manner as in BT-cytoplasm. Western blot analysis showed that the ORF79 peptide did not accumulate in an LD-CMS line, while ORF79 accumulated in a BT-CMS line and was diminished by Rf1. These results suggest that accumulation of ORF79 is not the cause of CMS in LD-cytoplasm and the mechanism of male-sterility induction/fertility restoration in LD-CMS is different from that in BT-CMS.  相似文献   

8.
The Rf3 gene restores the pollen fertility disturbed by S male sterile cytoplasm. In order to develop molecular markers tightly linked to Rf3, we used amplified fragment length polymorphism (AFLP) technique with near isogenic lines (NILs) and bulk segregant analysis (BSA). A BC1F1 population from a pair of NILs with different Rf3 locus was constructed and 528 primer combinations was screened. A linkage map was constructed around the Rf3 locus, which was mapped on the distal region of chromosome 2 long arm with the help of SSR marker UMC2184. The closest marker E7P6 was 0.9 cM away from Rf3. Marker E3P1, 2.4 cM from Rf3, and E12M7, 1.8 cM from Rf3, were converted into a codominant CAPS and a dominant SCAR marker, and designated as CAPSE3P1 and SCARE12M7, respectively. These markers are useful for marker-assisted selection and map-based cloning of the Rf3 gene.  相似文献   

9.
Cytoplasmic male sterility (CMS) in plants is a maternally inherited inability to produce functional pollen, and is often associated with mitochondrial DNA abnormalities. Specific nuclear loci that suppress CMS, termed as restorers of fertility (Rf), have been identified. Previously, we identified an Rf for the CMS Kosena radish and used genetic analysis to identify the locus and create a contig covering the critical interval. To identify the Rf gene, we introduced each of the lambda and cosmid clones into the CMS Brassica napus and scored for fertility restoration. Fertility restoration was observed when one of the lambda clones was introduced into the CMS B. napus. Furthermore, introduction of a 4.7-kb BamHI/HpaI fragment of the lambda clone is enough to restore male fertility. A cDNA strand isolated from a positive fragment contained a predicted protein (ORF687) of 687 amino acids comprising 16 repeats of the 35-amino acid pentatricopeptide repeat (PPR) motif. Kosena CMS radish plants were found to express an allele of this gene possessing four substituted amino acids in the second and third repeats of the PPR suggesting that the domains formed by these repeats in ORF687 are essential for fertility restoration. Protein levels of the Kosena CMS-associated mitochondrial protein ORF125 were considerably reduced in plants in which fertility was restored, although mRNA expression was normal. Regarding the possible role for PPR-containing proteins in the regulation of the mitochondrial gene, we propose that ORF687 functions either directly or indirectly to lower the levels of ORF125, resulting in the restoration of fertility in CMS plants.  相似文献   

10.
Causes of cytoplasmic male sterility (CMS) in plants have beenstudied for two decades, and mitochondrial chimeric genes havebeen predicted to induce CMS. However, it is unclear what happensafter CMS-associated proteins accumulate in mitochondria. Inour previous study of microarray analysis, we found that 140genes are aberrantly regulated in anthers of CW-type CMS ofrice (Oryza sativa L.). In the present study, we investigatedDCW11, one of the down-regulated genes in CW-CMS encoding aprotein phosphatase 2C (PP2C). DCW11 mRNA was preferentiallyexpressed in anthers, with the highest expression in maturepollen. As predicted by the N-terminal sequence, DCW11 signalpeptide–green fluorescent protein (GFP) fusion proteinwas localized in mitochondria. Knockdown of DCW11 in wild-typerice by RNA interference caused a major loss of seed-set fertility,without visible defect in pollen development. Since this knockdownphenotype resembled that of CW-CMS, we concluded that the down-regulationof DCW11 is correlated with CW-CMS. This idea was supportedby the up-regulation of alternative oxidase 1a (AOX1a), whichis known to be regulated by mitochondrial retrograde signaling,in DCW11 knockdown lines. Down-regulation of DCW11 and up-regulationof AOX1a were also observed in two other types of rice CMS.Our result indicates that DCW11 could play a role as a mitochondrialsignal transduction mediator in pollen germination.  相似文献   

11.
12.
Rf1 is a nuclear gene that controls fertility restoration in cases of cytoplasmic male sterility caused by the Owen cytoplasm in sugar beet. In order to isolate the gene by positional cloning, a BAC library was constructed from a restorer line, NK198, with the genotype Rf1Rf1. The library contained 32,180 clones with an average insert size of 97.8 kb, providing 3.4 genome equivalents. Five AFLP markers closely linked to Rf1 were used to screen the library. As a result, we identified eight different BAC clones that were clustered into two contigs. The gap between the two contigs was filled by chromosome walking. To map the Rf1 region in more detail, we developed five cleaved amplified polymorphic sequence (CAPS) markers from the BAC DNAs identified, and carried out genotyping of 509 plants in the mapping population with the Rf1-flanking AFLP and CAPS markers. Thirteen plants in which recombination events had occurred in the vicinity of the Rf1 locus were identified and used to map the molecular markers relative to each other and to Rf1. In this way, we were able to restrict the possible location of the Rf1 gene to a minimum of six BAC clones spanning an interval of approximately 250 kb. The first two authors contributed equally to this work.  相似文献   

13.
A single radish nuclear gene, Rfo, restores Ogura (ogu) cytoplasmic male sterility (CMS) in Brassica napus. A map-based cloning approach relying on synteny between radish and Arabidopsis was used to clone Rfo. A radish gene encoding a 687-amino-acid protein with a predicted mitochondrial targeting pre-sequence was found to confer male fertility upon transformation into ogu CMS B. napus. This gene, like the recently described Petunia Rf gene, codes for a pentatricopeptide repeat (PPR)-containing protein with multiple, in this case 16, PPR domains. Two similar genes that do not appear to function as Rfo flank this gene. Comparison of the Rfo region with the syntenic Arabidopsis region indicates that a PPR gene is not present at the Rfo-equivalent site in Arabidopsis, although a smaller and related PPR gene is found about 40 kb from this site. The implications of these findings for the evolution of restorer genes and other PPR encoding genes are discussed.  相似文献   

14.
Cytoplasmic male sterility (CMS) is widely known in higher plants, the mechanism of which is believed to involve incompatibility between nuclei and cytoplasms. In rice lines with the CMS trait, fertility is restored by the aid of a nuclear-encoded gene, Rf-1, whose locus has been determined in chromosome 10. We found a particular PCR-amplified fragment, designated fL601, that specifically amplified using the DNAs from Rf-1 lines tested as templates. RFLP mapping of the fL601 locus revealed that there are two loci for the fL601, and that both are tightly linked to the Rf-1 locus. Progeny analysis also showed high frequency of their co-segregation. Southern analysis of the genomic DNA demonstrated that the Rf-1 lines shared a unique sequence in the fL601 region. These results enabled us to construct a system for specific detection of the corresponding regions. Utilizing this detection system, we established a simple PCR-mediated selection method for the Rf-1 lines, which may facilitate the breeding for hybrid rice.  相似文献   

15.
In cytoplasmic male sterility (CMS), original mitochondrial genes contribute to sex determinism by provoking pollen abortion. The function of the encoded proteins remains unclear. We studied the ORF138 protein, responsible for the 'Ogura' CMS, which is both used in hybrid seed production and present in natural populations. We analyzed the biochemical and structural properties of this protein in male-sterile plants and in E. coli. We showed that this protein spontaneously forms dimers in vitro. Truncated variants of the protein, containing either the hydrophobic or the hydrophilic moiety, also spontaneously dimerize. By fractionating mitochondria, we showed that ORF138 was strongly associated with the inner mitochondrial membrane of male-sterile plants. Our results also strongly suggest that ORF138 forms oligomers in male-sterile plant mitochondria. In E. coli, ORF138 was associated with the plasma membrane, as shown by membrane fractionation, and formed oligomers. The production of this protein strongly inhibited bacterial growth, but not by inhibiting respiration. The observed toxic effects required both the hydrophilic and hydrophobic moieties of the protein.  相似文献   

16.
In comparing the genetic organization and exploring the molecular basis of cytoplasmic male sterility (CMS) in wheat, mitochondrial DNAs (mtDNA) from Triticum aestivum, T. timopheevi, CMS alloplasmic wheat with T. aestivum nucleus and T. timopheevi mitochondria, and fertility-restored lines were compared by hybridization analysis with specific probes for three gene regions: CoxII, cob, and coxI. Minor differences between T. aestivum- and T. timopheevi-derived sources were found for gene regions for coxII and cob. For coxI, there are significant differences between T. timopheevi-derived mtDNAs and T. aestivum mtDNA extending beyond an 8 kb distance. All T. timopheevi-derived mtDNA sources have a chimeric gene region (orf256) with part of the upstream coxI gene region, including some coxI-coding region, preceding coxI. The part of orf256 that does not include any of coxI and the 3-flanking region of CMS coxI are not found in T. aestivum mtDNA. Neither orf256 nor the CMS 3-flanking region of coxI are found in T. timopheevi or T. aestivum chloroplastic or nuclear DNA. There do not appear to be DNA sequence differences for the three gene regions studied that are related to either CMS or fertility-restored states.  相似文献   

17.
BT型细胞质雄性不育水稻及其三系的线粒体DNA研究   总被引:2,自引:0,他引:2  
用RAPD技术对BT型水稻胞质雄性不育系秀A及其保持系秀B、恢复系湘晴以及杂种F1代的线粒体DNA进行了比较分析。结果表明不育系与其保持系间存在显著差异;不育系与其F1之间mtDNA也存在差异。在引物OPJ-08的扩增产物中,秀A扩增出一条分子量为800bp的多态性片段,在引物OPK-10的扩增产物中,杂种F1扩增出一条分子量为900bp的片段。把这两片段回收、克隆并制备探针,OPJ-08800的Southern杂交结果显示不育系与其F1杂交图谱存在多态性;OPK-10900的Suthern杂交结果显示不育系与其保持系同存在差异。推测这两片段与育性可能有一定的联系。  相似文献   

18.
With an aim to clone the sorghum fertility restorer gene Rf1, a high-resolution genetic and physical map of the locus was constructed. The Rf1 locus was resolved to a 32-kb region spanning four open reading frames: a plasma membrane Ca2+-ATPase, a cyclin D-1, an unknown protein, and a pentatricopeptide repeat (PPR13) gene family member. An ~19-kb region spanning the cyclin D-1 and unknown protein genes was completely conserved between sterile and fertile plants as was the sequence spanning the coding region of the Ca2+-ATPase. In contrast, 19 sequence polymorphisms were located in an ~7-kb region spanning PPR13, and all markers cosegregated with the fertility restoration phenotype. PPR13 was predicted to encode a mitochondrial-targeted protein containing a single exon with 14 PPR repeats, and the protein is classified as an E-type PPR subfamily member. To permit sequence-based comparison of the sorghum and rice genomes in the Rf1 region, 0.53 Mb of sorghum chromosome 8 was sequenced and compared to the colinear region of rice chromosome 12. Genome comparison revealed a mosaic pattern of colinearity with an ~275-kb gene-poor region with little gene conservation and an adjacent, ~245-kb gene-rice region that is more highly conserved between rice and sorghum. Despite being located in a region of high gene conservation, sorghum PPR13 was not located in a colinear position on rice chromosome 12. The present results suggest that sorghum PPR13 represents a potential candidate for the sorghum Rf1 gene, and its presence in the sorghum genome indicates a single gene transposition event subsequent to the divergence of rice and sorghum ancestors.An erratum to this article can be found at  相似文献   

19.
20.
Bulked segregant analysis was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the restorer gene (Rfo) used in theOgura radish cytoplasmic male sterility of rapeseed. A total of 138 arbitrary 10-mer oligonucleotide primers were screened on the DNA of three pairs of bulks, each bulk corresponding to homozygous restored and male sterile plants of three segregating populations. Six primers produced repeatable polymorphisms between paired bulks. DNA from individual plants of each bulk was then used as a template for amplification with these six primers. DNA polymorphisms generated by four of these primers were found to be completely linked to the restorer gene with the polymorphic DNA fragments being associated either with the fertility restorer allele or with the sterility maintainer allele. Pairwise cross-hybridization demonstrated that the four polymorphic DNA fragments did not share any homology. Southern hybridization of labelled RAPD fragments on digested genomic DNA from the same three pairs of bulks revealed fragments specific to either the male sterile bulks or to the restored bulks and a few fragments common to all bulks, indicating that the amplified sequences are low copy. The four RAPD fragments that were completely linked to the restorer locus have been cloned and sequenced to develop sequence characterized amplified regions (SCARs). This will facilitate the construction of restorer lines used in breeding programs and is the first step towards map-based cloning of the fertility restorer allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号