首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybridization experiments were carried out with 12 of the approximately 15 species in the complex. The crosses involved plants at various ploidy levels from diploid (n=8) to duodecaploid (n=48). Viable F1 progeny were obtained from 26% of the crosses involving diploids, and from 66% of the crosses between polyploids. All but a few of the progeny had a high degree of pollen fertility, and all of those examined had regular pairing of chromosomes at meiosis. Even at the diploid level few reproductive barriers isolate the taxa of this complex, although morphologically distinct entities can be recognized.  相似文献   

2.
Based on the presence of three types of eggs with different diameters 0.13, 0.17 and 0.2 cm, we made two crosses: F2 (♀) × diploid red crucian carp (♂), and F2 (♀) × F10 tetraploid (♂). The ploidy levels of the progeny of the two crosses were examined by chromosome counting and DNA content measurement by flow cytometer. In the offspring of the former cross, tetraploids, trip-loids, and diploid were obtained. In the progeny of the latter cross, tetraploids and triploids were observed. The production of the different ploidy level fish in the progeny of the two crosses provided a further evidence that F2 might generate triploid, diploid and haploid eggs. The presence of the male tetraploid found in F2 (♀) × diploid red crucian carp (♂) suggested that the genotype of XXXY probably existed in the tetraploid progeny. The gonadal structures of the tetraploids and triploids indicated that both female and male tetraploids were fertile and the triploids were sterile. We concluded that the formations of different ploidy level eggs from F2 were contributed by endoreduplication and fusion of germ cells.  相似文献   

3.
Crosses between 21 triploid hybrid Cobitis females and 19 C. taenia (2n = 48) males led to viable progeny; whereas no embryonic development was observed in crosses with tetraploid males (4n = 98). The ploidy status of 491 progenies randomly selected with flow cytometry (316) or chromosome analysis (175) revealed an average of 55.2 % triploids and 44.8 % tetraploids, but the ratio of 3n versus 4n fish did change during development. In the first 2 days after hatching, approximately 65.1 % of tetraploid larvae were observed. Their number decreased significantly to 30.8 and 6.2 % on average during 2–5 and 10–15 months of life, respectively. The karyotype of tetraploid progeny (4n = 98) included 3n = 74 chromosomes of the parental female and n = 24 of C. taenia male. The number of tetraploid progeny indicated indirectly that about 66 % of eggs from 3n females were fertilized with C. taenia. The rest of the eggs developed clonally via gynogenesis or hemiclonally via hybridogenesis into triploids of the same karyotype structure as parental females. We have documented for the first time that (at least under experimental conditions) tetraploids are commonly formed, but are less viable than triploids, and a ratio similar to what is found under natural conditions is finally attained. The current explanation concerning the ploidy and karyotype structure of the progeny confirms that the eggs of 3n Cobitis females are not only capable of maintaining all chromosomes but are also capable of incorporating the sperm genome, thus creating the potential to produce tetraploids.  相似文献   

4.
The mating system of seven sympatric taxa of Chamaecrista occurring in the Chapada Diamantina Mountains, northeastern Brazil, was studied to determine the occurrence of self-incompatibility and interspecific genetic isolation mechanisms within the group. Self- and cross-pollination experiments and inter-taxon bidirectional crosses were performed. All of the populations were self-compatible and showed high percentages of spontaneous seed abortion on both self- and cross-pollinated fruits. The inter-incompatibility among the taxa of Chamaecrista is directed by different mechanisms depending on their degrees of phylogenetic proximity. In the crosses between closely related taxa (same clade), seed inviability was observed in the crossing pairs C. desvauxii var. graminea × C. desvauxii var. latistipula, and C. chapadae × C. glaucofilix. Inter-compatibility between species of the same clade occurred in C. blanchetii and C. confertiformis, with the formation of viable seeds. Pre-zygotic gametophytic reproductive isolation was observed among taxa of different clades, without penetration of the pollen tube into the ovule, or post-zygotic isolation through embryo or endosperm inviability, with abortion of the seeds. Inter-incompatibility represents an important factor in reproductive isolation and thus in the maintenance of the genetic identity of sympatric taxa that flower in synchrony and share pollinators.  相似文献   

5.
B. S. Ahloowalia 《Genetica》1969,40(1):379-392
Desynapsis is described in diploid and tetraploid plants of perennial ryegrass. The plants were derived by repeated cloning of a single mixoploid (2n=14 and 28) detected among colchicine-treated seedlings. The diploid and tetraploid clones varied in degree of desynapsis, chiasma number, and fertility. The variation among the clones was probably environmental. The progeny of the mixoploid parent included dipoids, tetraploids, and an aneuploid. One diploid and the aneuploid were desynaptic and originated perhaps by selfing. Apparently a single recessive gene determined desynapsis. The role of synaptic genes in controlling the chemical structure and function of nucleoprotein macromolecules is discussed.  相似文献   

6.
The genome size of 265 plants and the GC content of 126 plants from 63 populations of the Cyanus triumfetti and Cyanus montanus groups, collected across the Carpathians, Pannonia, Bohemian Massif, and Western and Dinaric Alps were determined by PI and DAPI flow cytometry. Variation of the nuclear DNA content among homoploid species, and intraspecific and interpopulation variation were confirmed in simultaneous analyses. The 2C-value at the diploid level (the C. triumfetti group) varied from 2.53 for Cyanus dominii subsp. sokolensis to 3.06?pg for C. triumfetti s.s. (1.21-fold range). At the tetraploid level (the C. montanus group), the 2C-value varied from 5.19 for Cyanus mollis to 5.84?pg for C. montanus (1.13-fold range). High intraspecific and interpopulation variation in the amount of nuclear DNA in the C. triumfetti group correlates with the extensive morphological variation found in this group. Significant between-species differences in genome size indicate that this attribute may be used as a supportive taxonomic marker for both of the groups studied. The GC content varied by 2.93?%, from 39.46?% for “Cyanus axillaris” to 40.61?% for Cyanus adscendens; this character is of no value for taxonomic purposes. Genome size of the studied populations is significantly higher in southern parts of the distribution area and at higher elevations. Plants with smaller genomes tend to occur in dry areas at low altitudes with high diurnal and annual temperature oscillations. The GC content of the populations studied is significantly correlated with longitude, increasing from east to west; and plants with GC-rich genomes are concentrated in the coldest areas with low minimum temperatures.  相似文献   

7.
Experimental crosses between diploids, triploids and tetraploids ofHieracium echioides were made to examine mating interactions. Specifically, cytotype diversity in progeny from experimental crosses, intercytotype pollen competition as a reproductive barrier between diploids and tetraploids, and differences in seed set between intra- and intercytotype crosses were studied. Only diploids were found in progeny from 2x × 2x crosses. The other types of crosses yielded more than one cytotype in progeny, but one cytotype predominated in each cross type: diploids (92%) in 2x × 3x crosses, tetraploids (88%) in 3x × 2x crosses, triploids (96%) in 2x × 4x crosses, triploids (90%) in 4x × 2x crosses, tetraploids (60%) in 3x × 3x crosses, pentaploids (56%) in 3x × 4x crosses, triploids (80%) in 4x × 3x crosses and tetraploids (88%) in 4x × 4x crosses. No aneuploids have been detected among karyologically analyzed plants. Unreduced egg cell production was detected in triploids and tetraploids, but formation of unreduced pollen was recorded only in two cases in triploids. Triploid plants produced x, 2x and 3x gametes: in male gametes x (92%) gametes predominated whereas in female gametes 3x (88%) gametes predominated. Cytotype diversity in progeny from crosses where diploids and tetraploids were pollinated by mixture of pollen from diploid and tetraploid plants suggested intercytotype pollen competition to serve as a prezygotic reproductive barrier. No statistically significant difference in seed set obtained from intra- and intercytotype crosses between diploids and tetraploids was observed, suggesting the absence of postzygotic reproductive barriers among cytotypes.  相似文献   

8.
Theory and empirical study produce clear links between mating system evolution and inbreeding depression. The connections between mating systems and outbreeding depression, whereby fitness is reduced in crosses of less related individuals, however, are less well defined. Here we investigate inbreeding and outbreeding depression in self‐fertile androdioecious nematodes, focusing on Caenorhabditis sp. 11. We quantify nucleotide polymorphism for nine nuclear loci for strains throughout its tropical range, and find some evidence of genetic differentiation despite the lowest sequence diversity observed in this genus. Controlled crosses between strains from geographically separated regions show strong outbreeding depression, with reproductive output of F1s reduced by 36% on average. Outbreeding depression is therefore common in self‐fertilizing Caenorhabditis species, each of which evolved androdioecious selfing hermaphroditism independently, but appears strongest in C. sp. 11. Moreover, the poor mating efficiency of androdioecious males extends to C. sp. 11. We propose that self‐fertilization is a key driver of outbreeding depression, but that it need not evolve as a direct result of local adaptation per se. Our verbal model of this process highlights the need for formal theory, and C. sp. 11 provides a convenient system for testing the genetic mechanisms that cause outbreeding depression, negative epistasis, and incipient speciation.  相似文献   

9.

Background and Aims

Apomictic plants maintain functional pollen, and via pollination the genetic factors controlling apomixis can be potentially transferred to congeneric sexual populations. In contrast, the sexual individuals do not fertilize apomictic plants which produce seeds without fertilization of the egg cells. This unidirectional introgressive hybridization is expected finally to replace sexuality by apomixis and is thought to be a causal factor for the wide geographical distribution of apomictic complexes. Nevertheless, this process may be inhibited by induced selfing (mentor effects) of otherwise self-incompatible sexual individuals. Here whether mentor effects or actual cross-fertilization takes place between diploid sexual and polyploid apomictic cytotypes in the Ranunculus auricomus complex was tested via experimental crosses.

Methods

Diploid sexual mother plants were pollinated with tetra- and hexaploid apomictic pollen donators by hand, and the amount of well-developed seed compared with aborted seed was evaluated. The reproductive pathways were assessed in the well-developed seed via flow cytometric seed screen (FCSS).

Key Results

The majority of seed was aborted; the well-developed seeds have resulted from both mentor effects and cross-fertilization at very low frequencies (1·3 and 1·6 % of achenes, respectively). Pollination by 4x apomictic pollen plants results more frequently in cross-fertilization, whereas pollen from 6x plants more frequently induced mentor effects.

Conclusions

It is concluded that introgression of apomixis into sexual populations is limited by ploidy barriers in the R. auricomus complex, and to a minor extent by mentor effects. In mixed populations, sexuality cannot be replaced by apomixis because the higher fertility of sexual populations still compensates the low frequencies of potential introgression of apomixis.Key words: Apomixis, Ranunculus auricomus, evolution, geographical parthenogenesis, crossing experiments, flow cytometry  相似文献   

10.
The impact of the ploidy level on biomass accumulation and the production of high-value secondary metabolites was studied in Echinacea purpurea (L.) Moench. Tetraploid E. purpurea was obtained by treating diploid explants with colchicine. The morphology, biomass yield, the contents of caffeic acid derivatives and alkamides, and the activities of phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) were compared between diploid plants and tetraploid plants of E. purpurea. The total fresh root weight and total dry root weight of the tetraploid plants were 39.32 and 40.48 % higher than those of the diploid plants, respectively. The chemical profiles of the diploid and tetraploid E. purpurea plants were similar, as determined through a comparison of their FTIR spectra and second derivative spectra. The caffeic acid derivatives and alkamides in the diploid and tetraploid plants were determined by HPLC. The tetraploid plants had higher contents of both of these types of molecules. In addition, the tetraploid plants had higher PAL and C4H activities compared with the diploid plants. The enhancement in the PAL and C4H activities was accompanied with an increase in the cichoric acid content, which indicates that the induction of polyploidy in E. purpurea resulted in higher PAL and C4H expression and promoted the biosynthesis of cichoric acid. Therefore, the induction of polyploidy may be a valid strategy to achieve a higher yield of biomass and bioactive compounds in E. purpurea.  相似文献   

11.
The first proven data on natural hybridization in the genus Hieracium s. str. are presented. Plants with intermediate morphological characters between the diploids H. alpinum and H. transsilvanicum were found in the Muntii Rodnei (Romanian Eastern Carpathians) in 2001 and in the Chornohora Mts (Ukrainian Eastern Carpathians) in 2003. While plants of intermediate morphology between usually so called basic species are usually tri- or tetraploid in Hieracium s. str., these plants were diploid (2n=18) like both parental species in this region. The Romanian plant did not produce fertile achenes in free pollination and in control backcrosses with H. transsilvanicum, two hybrids from Ukraine were completly seed sterile in free pollination and reciprocal crosses. Pollen stainability as an indirect measure of male fertility was quite high in the studied Ukrainian hybrid plants and similar to the parental taxa. Evidence from allozyme analysis also confirmed the hybrid origin of the studied plants. Sequencing and PCR-RFLP analyses of the trnT-trnL intergenic spacer revealed that all hybrid plants had the H. transsilvanicum chloroplast DNA haplotype. Maternal inheritance of chloroplast DNA in this particular cross was proved with artificial hybrids from reciprocal experimental crosses between H. alpinum and H. transsilvanicum. In both localities, the natural hybrid plants were found in disturbed habitats, exceptionally allowing contact of the otherwise ecologically vicariate parental species. Morphologically, the hybrid plants belong to H. × krasani Woł.  相似文献   

12.
Detailed male meiosis, critical morphological observations and distribution pattern of diploid as well as tetraploid cytotypes of the Western Himalayan species, Bupleurum lanceolatum have been evaluated at present. A diploid (n = 8) cytotype is reported from Kashmir, whereas, both diploid (n = 8) and tetraploid (n = 16) cytotypes are available from two districts Kangra and Sirmaur of Himachal Pradesh. Out of these, the tetraploid cytotype makes new addition for the species on a worldwide basis. As per behavior, a tetraploid cytotype is characterized by abnormal meiosis leading to high pollen sterility and size variation of the pollen grains. Morphologically, tetraploids are noted to be luxuriant in comparison to the diploids.  相似文献   

13.
Background and Aims Allopolyploidy and intraspecific heteroploid crosses are associated, in certain groups, with changes in the mating system. The genus Sorbus represents an appropriate model to study the relationships between ploidy and reproductive mode variations. Diploid S. aria and tetraploid apomictic S. austriaca were screened for ploidy and mating system variations within pure and sympatric populations in order to gain insights into their putative causalities.Methods Flow cytometry was used to assess genome size and ploidy level among 380 S. aria s.l. and S. austriaca individuals from Bosnia and Herzegovina, with 303 single-seed flow cytometric seed screenings being performed to identify their mating system. Pollen viability and seed set were also determined.Key Results Flow cytometry confirmed the presence of di-, tri- and tetraploid cytotype mixtures in mixed-ploidy populations of S. aria and S. austriaca. No ploidy variation was detected in single-species populations. Diploid S. aria mother plants always produced sexually originated seeds, whereas tetraploid S. austriaca as well as triploid S. aria were obligate apomicts. Tetraploid S. aria preserved sexuality in a low portion of plants. A tendency towards a balanced 2m : 1p parental genome contribution to the endosperm was shared by diploids and tetraploids, regardless of their sexual or asexual origin. In contrast, most triploids apparently tolerated endosperm imbalance.Conclusions Coexistence of apomictic tetraploids and sexual diploids drives the production of novel polyploid cytotypes with predominantly apomictic reproductive modes. The data suggest that processes governing cytotype diversity and mating system variation in Sorbus from Bosnia and Herzegovina are probably parallel to those in other diversity hotspots of this genus. The results represent a solid contribution to knowledge of the reproduction of Sorbus and will inform future investigations of the molecular and genetic mechanisms involved in triggering and regulating cytotype diversity and alteration of reproductive modes.  相似文献   

14.
Summary A high frequency of paternal plastid transmission occurred in progeny from crosses among normal green alfalfa plants. Plastid transmission was analyzed by hybridization of radiolabeled alfalfa plastid DNA (cpDNA) probes to Southern blots of restriction digests of the progeny DNA. Each probe revealed a specific polymorphism differentiating the parental plastid genomes. Of 212 progeny, 34 were heteroplastidic, with their cpDNAs ranging from predominantly paternal to predominantly maternal. Regrowth of shoots from heteroplasmic plants following removal of top growth revealed the persistence of mixed plastids in a given plant. However, different shoots within a green heteroplasmic plant exhibited paternal, maternal, or mixed cpDNAs. Evidence of maternal nuclear genomic influence on the frequency of paternal plastid transmission was observed in some reciprocal crosses. A few tetraploid F1 progeny were obtained from tetraploid (2n=4x=32) Medicago sativa ssp. sativa x diploid (2n=2x=16) M. sativa ssp. falcata crosses, and resulted from unreduced gametes. Here more than the maternal genome alone apparently functioned in controlling plastid transmission. Considering all crosses, only 5 of 212 progeny cpDNAs lacked evidence of a definitive paternal plastid fragment.Contribution No. 89-524-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan  相似文献   

15.
Fragmentation may negatively affect plant fitness through pollen limitation and increased levels of inbreeding. Effects of fragmentation may vary with regard to life form and breeding system, and few studies exist for wind-pollinated trees. We examined the effects of hand-selfing, varying outcrossing distances and pollen addition on seed mass and germination rate of Polylepis australis BITT. (Rosaceae), a wind-pollinated treeline species endemic to Argentina. We also investigated pollen germination on the stigma and pollen tube growth to determine compatibility resulting from selfing and outcrossing. Selfing reduced seed germination rates with significant differences between open pollination and outcrosses at 30 km. In addition, we found a tendency for pollen germination and pollen tube growth to decrease following selfing. Between-fragment crosses resulted in a trend of higher reproductive output than within-fragment crosses, whereas values were similar between open pollination and between-fragment crosses. Pollen addition did not increase reproductive success neither in small nor in larger fragments. Our results suggest that highly isolated P. australis forests have a potential for inbreeding depression through selfing and within-fragment crosses. However, the results also indicate that pollen flow between P. australis forest fragments is still effective at the current fragmentation level, counteracting negative effects on seed quality resulting from reproductive isolation.  相似文献   

16.
The branching coral Acropora palmata is a foundation species of Caribbean reefs that has been decimated in recent decades by anthropogenic and natural stressors. Declines in population density and genotypic diversity likely reduce successful sexual reproduction in this self-incompatible hermaphrodite and might impede recovery. We investigated variation among genotypes in larval development under thermally stressful conditions. Six two-parent crosses and three four-parent batches were reared under three temperatures and sampled over time. Fertilization rates differed widely with two-parent crosses having lower fertilization rates (5–56 %, mean 22 % ± 22 SD) than batches (from 31 to 87 %, mean 59 % ± 28 SD). Parentage analysis of larvae in batch cultures showed differences in gamete compatibility among parents, coinciding with significant variation in both sperm morphology and egg size. While all larval batches developed more rapidly at increased water temperatures, rate of progression through developmental stages varied among batches, as did swimming speed. Together, these results indicate that loss of genotypic diversity exacerbates already severe limitations in sexual reproductive success of A. palmata. Nevertheless, surviving parental genotypes produce larvae that do vary in their phenotypic response to thermal stress, with implications for adaptation, larval dispersal and population connectivity in the face of warming sea surface temperatures.  相似文献   

17.
Acacia mearnsii (black wattle) is a commercially important forestry species in South Africa, grown for its timber as well as its bark. It is, however, also considered to be an alien invader of indigenous vegetation and for this reason the production of a sterile variety would be highly desirable for commercial forestry in South Africa. Previous research on crosses between diploid and tetraploid parent plants to produce triploid progeny has resulted in poor seed set. One possible barrier preventing seed set could be the viability of the pollen used in the cross pollination operations. Thus a study was conducted to test the pollen viability. In vitro agar media germination tests (ACIAR and Brewbaker and Kwack media) were optimised on Acacia podalyriifolia pollen and then used together with vital stain tests (Sigma® DAB peroxidase and p-phenylendiamine) to test pollen germination and viability of A. mearnsii pollen. These were then compared to in vivo pollen germination on the stigma, and were conducted on both diploid and tetraploid pollen mixes. Results showed that the vital stain tests gave significantly (p < 0.05) higher pollen viability than the agar germination tests and were more in agreement with the results from the pollen germination rate on the stigma. For both the diploid and tetraploid pollen mixes tested, there were no significant differences (p > 0.05) between the two agar media germination tests and between the two vital stain tests.  相似文献   

18.
Understanding genetic mechanisms of self-incompatibility (SI) and how they evolve is central to understanding the mating behaviour of most outbreeding angiosperms. Sporophytic SI (SSI) is controlled by a single multi-allelic locus, S, which is expressed in the diploid (sporophyte) plant to determine the SI phenotype of its haploid (gametophyte) pollen. This allows complex patterns of independent S allele dominance interactions in male (pollen) and female (pistil) reproductive tissues. Senecio squalidus is a useful model for studying the genetic regulation and evolution of SSI because of its population history as an alien invasive species in the UK. S. squalidus maintains a small number of S alleles (7–11) with a high frequency of dominance interactions. Some S. squalidus individuals also show partial selfing and/or greater levels of cross-compatibility than expected under SSI. We previously speculated that these might be adaptations to invasiveness. Here we describe a detailed characterization of the regulation of SSI in S. squalidus. Controlled crosses were used to determine the S allele dominance hierarchy of six S alleles and effects of modifiers on cross-compatibility and partial selfing. Complex dominance interactions among S alleles were found with at least three levels of dominance and tissue-specific codominance. Evidence for S gene modifiers that increase selfing and/or cross-compatibility was also found. These empirical findings are discussed in the context of theoretical predictions for maintenance of S allele dominance interactions, and the role of modifier loci in the evolution of SI.  相似文献   

19.
20.
二倍体鲫鲤F2产生不同倍性卵子的证据   总被引:4,自引:0,他引:4  
在检测到鲫鲤F2产生3种不同大小(直径分别为0.13 cm,0.17cm和0.2 cm)类型的卵子基础上,进行了F2(♀)×红鲫(♂)及F2(♀)×四倍体鲫鲤(♂)的交配实验.通过染色体计数和流式细胞仪分析,在F2(♀)×红鲫(♂)后代中获得了四倍体、三倍体、二倍体鱼;在F2(♀)×四倍体鲫鲤(♂)后代中获得了四倍体和三倍体鱼.这两个交配组合后代中出现的不同倍性的鱼类为证明鲫鲤F2能产生三倍体、二倍体和单倍体卵子提供了进一步证据.F2(♀)×红鲫(♂)中雄性四倍体鱼的存在说明在四倍体后代中存在基因型为XXXY的个体.对上述两个交配组合后代的四倍体鱼和三倍体鱼的性腺结构观察表明四倍体鱼是可育的,而三倍体鱼是不育的.作者认为鲫鲤F2能够产生二倍体和三倍体卵子与核内复制机制和生殖细胞的融合有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号