首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Tuber aestivum is widely distributed across Europe, little is known about its biology and ecology. We assess the vegetation composition of wild T. aestivum sites and use this information to characterise suitable habitats in Fagus sylvatica, Carpinus betulus and Ostrya carpinifolia (FCO) forests. Plant species composition at 16 naturally colonised T. aestivum sites in southwestern Germany and Switzerland was compared with that of 232 reference sites in Swiss FCO forest communities. The vegetation composition of truffle sites exhibits a high proportion of herb and shrub species that are indicators of a warm and dry climate, alkaline soil, and open tree canopy and thus typically occur in thermophilous FCO communities on calcareous bedrock. We conclude that T. aestivum is associated with a set of key species in addition to known host species. Based on their floristic composition, we identified FCO forest communities with high and low suitability for T. aestivum.  相似文献   

2.
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.  相似文献   

3.
The vegetation of broad-leaved deciduous forests in Hordaland, Western Norway is described with regards to species composition and structure. The investigation is based on phytosociological analyses of native forest stands dominated by Corylus avellana, Fraxinus excelsior, Ulmus glabra , or Tilia cordata. Two-way-indicator analysis (TWINSPAN) and correspondence analysis (CA) are used to distinguish different vegetation types and assess possible gradients in the vegetation data. The vegetation types are discussed in relation to equivalent forest communities and to syntaxonomical units. Two forest types are described at the first hierarchical TWINSPAN level: 1) A hygrophilous and slightly thermophilous Fraxinus excelsior-Cirriphyllum piliferum forest characterised by an open tree canopy, a dense field layer of tall herbs and ferns, and a high cover of bryophytes. 2) A thermophilous and less hygrophilous Corylus avellana-Brachypodium sylvaticum forest characterised by a dense tree layer, a more open field layer with larger elements of small herbs, and a somewhat lower bryophyte cover. The CA analysis clearly separates the samples from the first TWINSPAN division along the first ordination axis. Five forest types have been described at the second hierarchical level, mainly associated with differences in mesotrophic and eutrophic species, but there is clearly a gradient structure in the species composition between these plant communities. In relation to syntaxonomy, the first TWINSPAN division supports the separation of the west Norwegian broad-leaved deciduous forests into a hygrophilous plant community, the Eurhynchio-Fraxinetum (Blom 1982) Øvstedal 1985 and a drier and more thermophilous community, the Primulo-Ulmetum (Blom 1982) Øvstedal 1985.  相似文献   

4.
Aim In contrast to non‐forest vegetation, the species richness–productivity (SR‐P) relationship in forests still remains insufficiently explored. Several studies have focused on the diversity of the tree layer, but the species richness of temperate deciduous forests is mainly determined by their species‐rich herb layer. The factors controlling herb‐layer productivity may differ from those affecting tree layers or open herbaceous vegetation, and thus the SR‐P relationship and its underlying processes may differ. However, the few relevant studies have reported controversial results. Here we explore the SR‐P relationship in the forest herb layer across different areas from oceanic to continental Europe, and put the effect of habitat productivity on species richness into context with other key factors, namely soil pH and light availability. Location North‐western Germany, Czech Republic, Slovakia and southern Urals (Russia). Methods We measured herb‐layer species richness and biomass, soil pH and tree‐layer cover in 156 vegetation plots of 100 m2 in deciduous forests. We analysed the SR‐P relationship and the relative importance of environmental variables using regression models for particular areas and separate forest types. Results We found a consistent monotonic increase in the herb‐layer species richness with productivity across all study areas and all forest types. Soil pH and light availability also affected species richness, but their relative importance differed among areas. Main conclusions We suggest that the monotonically increasing SR‐P relationship in the forest herb layer results from the fact that herb‐layer productivity is limited by canopy shading; competition within the herb layer is therefore not strong enough to exclude many species. This differs fundamentally from open herbaceous vegetation, which is not subject to such productivity limits and consequently exhibits a unimodal SR‐P relationship. We present a conceptual model that might explain the differences in the SR‐P relationship between the forest herb layer and open herbaceous vegetation.  相似文献   

5.
The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.  相似文献   

6.
Terrestrial isopods were collected in 13 forest fragments differing in area (within the range of 0.1 and 254.5 ha), shape and composition of forest vegetation (thermophilous oak, mesophilous oak-hornbeam, thermophilous oak-hornbeam, acidophilous oak, basiphilous oak, beech oak-hornbeam, moist mixed deciduous forest, plantations of deciduous and coniferous trees), all situated in the Český kras Protected Landscape Area, Czech Republic, Central Europe. Number of sites sampled in each fragment of forest depended on its size and ranged from 1 to 7. Altogether 30 sites were sampled. Soil samples (5 per site collected twice a year) and pitfall trapping (5 traps per site in continuous operation throughout a year) during 2008–2009 yielded a total of 14 species of terrestrial isopods. The highest densities and highest epigeic activities of terrestrial isopods were recorded in the smallest fragments of woodland. Although a wider range of habitats were sampled in the larger fragments of woodland there was not a greater diversity of species there and the population densities and epigeic activities recorded there were lower. Porcellium collicola was most abundant in small fragments of woodland regardless the vegetation there. Armadillidium vulgare and Protracheoniscus politus were statistically more abundant in the larger fragments of woodland. The results indicate that forest fragmentation does not necessarily result in a decrease in the species richness of the isopod assemblages in such habitats.  相似文献   

7.
We assessed the size of seed bank, species diversity and similarity between seed bank and standing vegetation in four oriental beech (Fagus orientalis Lipsky) community types of the central Hyrcanian forests of northern Iran. For this purpose a total of 52 relevés was established in two associations and two subassociations of the beech forests, and six soil samples (20 × 20 cm square and to a depth of 10 cm) were collected in each relevé in mid-spring, after the germination season had ended. Soil seed bank was investigated using the seedling emergence method. A total of 63 species, 57 genera and 36 families was represented in the persistent soil seed bank of the forest communities. The seed bank contained 28 species not found as adult plants in the vegetation, but these were mostly early successional species. Size of the seed bank ranged from 3740 to 4676 individuals m−2 in the Rusco hyrcani-Fagetum orientalis and Danae racemosae-Fagetum orientalis associations, respectively. Species composition of seed banks and aboveground vegetation had low similarity with an average of 24.3% in the four plant communities, because only 38% of the species were the same in the vegetation and the seed banks. Most seeds in the seed bank were from early successional species, and the only tree with a large persistent seed bank was the fast-growing pioneer Alnus subcordata. DCA ordination also demonstrated low similarity between soil seed bank and vegetation. The soil seed banks of the four beech communities did not differ significantly in size, composition, diversity and uniformity. Although above ground vegetation in the four community types is floristically distinct, there is considerable overlap among the soil seed banks because they contain in a similar way early successional species. Further, the absence of typical forest species in the soil seed bank indicates that restoration of forest tree species cannot rely on the soil seed bank.  相似文献   

8.
The effects of climate change on tropical forests may have global consequences due to the forests’ high biodiversity and major role in the global carbon cycle. In this study, we document the effects of experimental warming on the abundance and composition of a tropical forest floor herbaceous plant community in the Luquillo Experimental Forest, Puerto Rico. This study was conducted within Tropical Responses to Altered Climate Experiment (TRACE) plots, which use infrared heaters under free‐air, open‐field conditions, to warm understory vegetation and soils + 4°C above nearby control plots. Hurricanes Irma and María damaged the heating infrastructure in the second year of warming, therefore, the study included one pretreatment year, one year of warming, and one year of hurricane response with no warming. We measured percent leaf cover of individual herbaceous species, fern population dynamics, and species richness and diversity within three warmed and three control plots. Results showed that one year of experimental warming did not significantly affect the cover of individual herbaceous species, fern population dynamics, species richness, or species diversity. In contrast, herbaceous cover increased from 20% to 70%, bare ground decreased from 70% to 6%, and species composition shifted pre to posthurricane. The negligible effects of warming may have been due to the short duration of the warming treatment or an understory that is somewhat resistant to higher temperatures. Our results suggest that climate extremes that are predicted to increase with climate change, such as hurricanes and droughts, may cause more abrupt changes in tropical forest understories than longer‐term sustained warming.  相似文献   

9.
Hédl  Radim 《Plant Ecology》2004,170(2):243-265
From 1941–;1944 nearly 30 phytosociological relevés were completed by F. K. Hartmann in the Rychlebské Mountains, a typical mountainous area in northeastern Czech Republic. Of the original plots still covered with adult grown beech (Fagus sylvatica) forest, 22 were resampled in 1998 and 1999. In order to describe the recent vegetation variability of the sites 57 relevés were recorded. Changes in vegetation were estimated using relative changes in species density and ordinations (PCA, RDA). Environmental changes were assessed using Ellenberg indicator values when no direct measurements were available. A decline in species diversity has been documented, particularly, many species occurring frequently in deciduous forests with nutrient and moisture well-supplied soils around neutral have decreased. In contrast, several light-demanding, acid- and soil desiccation-tolerant species have increased. Natural succession, quantified as forest age, contributed slightly to these changes. In Ellenberg indicator values, a decline in F (soil moisture), R (soil calcium) and N (ecosystem productivity), and an increase in L (understorey light) were shown. This is interpreted as the influence of modified forestry management and of airborne pollutants. Intensified logging caused the canopy to open and soil conditions to worsen. The latter is most likely also due to acid leaching of soil cations (Ca, K, Na). This caused a decline in soil productivity, thus the effect of nitrification could not be detected. The original relevés may have differed in size influencing the results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Increasing summer droughts represent a major threat for the vitality and productivity of forests in the temperate zone. European beech, the most important tree species of Central Europe’s natural forest vegetation, is known to suffer from increased drought intensity at its southern distribution limits, but it is not well known how this species is affected in the center of its distribution range in a sub-oceanic climate. We compared tree-ring chronologies and the climate sensitivity of growth (MS) in 11 mature beech stands along a precipitation gradient (855–576 mm y?1) on two soil types with contrasting water storage capacity (WSC) in northwest Germany to test the hypotheses that recent warming is impairing beech growth also in the center of its distribution below a certain precipitation limit, and stands with low soil WSC are more susceptible. We found a threshold of about 350 mm of mean growing season precipitation below which basal area increment (BAI) showed a consistent decline since the 1970s. The frequency of negative pointer years and MS were highest in low-precipitation stands on sandy soil, but both parameters have increased during the last decades also in the moister stands. The factor with largest impact on BAI was precipitation in June, in combination with high mid-summer temperatures. Contrary to our hypothesis, the edaphic effect on growth dynamics was surprisingly small. We conclude that global warming-related growth decline is affecting European beech even in the center of its distribution below a hydrological threshold that is mainly determined by mid-summer rainfall.  相似文献   

11.
In this study we examine the relationships between the vegetation of beech and beech-oak forest communities (Hordelymo-Fagetum, Galio-Fagetum, Deschampsio-Fagetum, Betulo-Quercetum) and their soil conditions in the lowlands of northern Germany, based on 84 sample plots. In all plots the vegetation was recorded and soil parameters were analysed (thickness of the O- and the A-horizons, pH, S-value, base saturation, C/N, mean Ellenberg moisture indicator value). The vegetation classification according to the traditional Braun-Blanquet approach was compared with the result of a multivariate cluster analysis. Vegetation-site relationships were analysed by means of an indirect gradient analysis (DCA).Both traditional classification methods and the cluster analysis have produced comparable classification results. So far as the species composition is concerned, a similar grouping of sample plots was found in both approaches. Multivariate cluster analysis thus supports the classification found by the Braun-Blanquet method. The result of the DCA shows that the four forest communities mentioned above represent clearly definable ecological units. The main site factor influencing changes in the species composition is a base gradient, which is best expressed by the S-value. In addition, within the series Hordelymo-Fagetum - Galio-Fagetum - Deschampsio-Fagetum the C/N-ratios and the thickness of the organic layers (O-horizon) increase continuously. By contrast, the floristic differences between oligotrophic forest communities (i.e., Deschampsio-Fagetum and Betulo-Quercetum) cannot be explained by a base gradient and increasing C/N-ratios. It is suggested that a different forest management history in some cases (e.g., promotion of Quercus robur by silvicultural treatments) is responsible for differences in the species composition, but on the other hand the result of the DCA indicates that Fagus sylvatica is replaced by Quercus robur with increasing soil moisture (i.e., with the increasing influence of a high groundwater table). Summarizing these results, it can be concluded that the ecological importance of single site factors affecting the species composition changes within the entire site spectrum covered by the beech and beech-oak forests of northern Germany.  相似文献   

12.
We evaluated effects of atmospheric deposition of nitrogen on the composition of forest understorey vegetation both in space and time, using repeated data from the European wide monitoring program ICP‐Forests, which focuses on normally managed forest. Our aim was to assess whether both spatial and temporal effects of deposition can be detected by a multiple regression approach using data from managed forests over a relatively short time interval, in which changes in the tree layer are limited. To characterize the vegetation, we used indicators derived from cover percentages per species using multivariate statistics and indicators derived from the presence/absence, that is, species numbers and Ellenberg's indicator values. As explanatory variables, we used climate, altitude, tree species, stand age, and soil chemistry, besides deposition of nitrate, ammonia and sulfate. We analyzed the effects of abiotic conditions at a single point in time by canonical correspondence analysis and multiple regression. The relation between the change in vegetation and abiotic conditions was analyzed using redundancy analysis and multiple regression, for a subset of the plots that had both abiotic data and enough species to compute a mean Ellenberg N value per plot using a minimum of three species. Results showed that the spatial variation in the vegetation is mainly due to “traditional” factors such as soil type and climate, but a statistically significant part of the variation could be ascribed to atmospheric deposition of nitrate. The change in the vegetation over the past c. 10 years was also significantly correlated to nitrate deposition. Although the effect of deposition on the individual species could not be clearly defined, the effect on the vegetation as a whole was a shift toward nitrophytic species as witnessed by an increase in mean Ellenberg's indicator value.  相似文献   

13.
With the establishment of the Natura 2000 (N2000) network, the European Union intends to develop strategies to conserve Europe's threatened habitats and species, including bats. Forest-dwelling bats are highly reliant on forest structures, such as snags and hollow trees, which the bats need as roosts. The decrease in such forest microhabitats significantly affects the habitat use and, therefore, the activity in forests. To determine whether N2000 beech forests under active timber production offer better habitats for bats compared to commercially used non-N2000 forests, we measured the bat activity and assessed the potential roosts in trees and snags in eleven pairs of stands. All survey stands represented mesotrophic beech forests (Fagus sylvatica L.) of the N2000 habitat type 9130 (Asperulo-Fagetum) in three European Biogeographic Regions. The activity of all bat species, the activity of priority N2000 species, the species number, the number of trees with roosts and the snag volume did not differ significantly between the N2000 and non-N2000 stands. We conclude that the current management of the N2000 beech forests is almost identical to that of non-N2000 commercial forests, and thus, the N2000 status has not led to an increase of bat-relevant habitat variables yet. Consequently, additional efforts beyond the administrative assignment of N2000 areas are required to build and ensure an ecologically effective and sustainable network of beech forests in Europe, including increasing important forest requirements for bats, such as roosts and snags.  相似文献   

14.
Invasion of exotic forest pests and pathogens is a serious environmental problem for many forests throughout the world, and has been especially damaging to forests of eastern North America. We studied the impacts of an exotic pest/pathogen complex, the beech bark disease (BBD), in the Catskill Mountains of New York State, USA. In this region, BBD has caused a decline in the basal area of American beech (Fagus grandifolia Ehrh.) over the last 60 years and this decline has been accompanied by an increase in the basal area of sugar maple (Acer saccharum Marsh.). We studied the impacts of the BBD on carbon (C) and nitrogen (N) cycling using a series of stands that represented a sequence of disease impact and beech replacement by sugar maple. Our study showed that these long-term changes in tree species composition can lead to important changes in C and N cycling in the ecosystem, including an increase in litter decomposition, a decrease in soil C:N ratio, and an increase in extractable nitrate in the soil and nitrate in soil solution. Rates of potential net N mineralization and nitrification did not change across the BBD sequence, but the fraction of mineralized N that was nitrified increased significantly. Many of the observed changes in ecosystem function are larger in magnitude than those attributed to climate change or air pollution, suggesting that the impacts of invasive pests and pathogens on tree species composition could be one of the most important factors driving changes in C and N cycling in these forests in the coming decades.  相似文献   

15.
16.
The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long‐term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life‐form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate.  相似文献   

17.
The vegetation of natural fir-beech forests on the western edge of the Carpathians was repeatedly surveyed in 1972(4) and 1994(5) on 34 plots in the Razula and Salajka reserves. Concurrently repeated whole-area dendrometric measurements of all live and dead trees were made together with maps of forest development stages. The maps were used to compare vegetation changes. The objective was to assess the tree layer dynamics, to discern vegetation development trends from cyclical changes, and to assess the changes of site conditions through phytoindication. The fir (Abies alba) population showed disrupted continuity of development associated with its pronounced withdrawal and replacement by beech (Fagus sylvatica). Rather than a cyclical change, the phenomenon is a trend that can be expected to become more dominant in the future. The reason for the interchange of the two species is seen in a fading response to the medieval colonization of Carpathian ridges connected with the exploitation of local forests for grazing and intensive litter raking. The herb layer was significantly modelled by changes occurring over time and by the dynamics of forest development stages. Species diversity in Razula was observed to increase. Salajka exhibited an invasion of acidophilous taxa (Luzula luzuloides, Vaccinium myrtillus) and decreased frequency of demanding taxa (Galeobdolon montanum, Dentaria enneaphyllos, Galium odoratum). Changes in the coverage ofDryopteris filixmas, Rubus idaeus andSenecio ovatus were interpreted as cyclical changes. No significant shifts were found in the species diversity between the stages. The herb layer at a disintegration stage was homogenized and exhibited the lowest tendency to gain relative control of the undergrowth; the tendency was highest at the optimum stage. The stages of forest development exhibited changes in soil nitrogen and soil reaction.  相似文献   

18.
The introduction of non-native ambrosia beetles can cause severe damage in forest ecosystems. Understanding the environmental drivers affecting their invasion at the local scale is of utmost importance to enhancing management strategies. Our objectives were: (1) to determine the influence of forest composition, forest structure, and climate on invasion success of non-native ambrosia beetles in deciduous temperate forests, and (2) to test the effect of host tree species on colonization success by non-native ambrosia beetles. In 2013, we sampled 25 forest stands located in North-East Italy belonging to three forest types dominated respectively by hop hornbeam, chestnut, and beech. Both ethanol-baited traps and trap-logs of five tree species (hop hornbeam, chestnut, beech, manna ash, and black locust) were used to sample non-native and native ambrosia beetle communities. We found a clear effect of forest composition on non-native species richness and activity-density, as measured in ethanol-baited traps, both of which were higher in chestnut-dominated forests. Furthermore, we found a positive effect of temperature on both the number of trapped non-native species and their activity-density, with cold temperatures limiting beetle spread in high-elevation forests. Only Xylosandrus germanus successfully colonized the trap-logs. The number of colonized logs was higher for chestnut and in chestnut-dominated forests. Both trapping and log-baiting indicated that chestnut-dominated forests were at greater risk of invasion than hop hornbeam- and beech-dominated forests. Given the economic and ecological importance of chestnut, ambrosia beetle communities present in chestnut-dominated forests should be monitored to determine where protective measures must be taken.  相似文献   

19.
Severe drought events increasingly affect forests worldwide, but little is known about their long-term effects at the ecosystem level. Competition between trees and herbs (‘overstorey–understorey competition’) for soil water can reduce tree growth and regeneration success and may thereby alter forest structure and composition. However, these effects are typically ignored in modelling studies. To test the long-term impact of water competition by the herbaceous understorey on forest dynamics, we incorporated this process in the dynamic forest landscape model LandClim. Simulations were performed both with and without understorey under current and future climate scenarios (RCP4.5 and RCP8.5) in a drought-prone inner-Alpine valley in Switzerland. Under current climate, herbaceous understorey reduced tree regeneration biomass by up to 51%, particularly in drought-prone landscape positions (i.e., south-facing, low-elevation slopes), where it also caused a shift in forest composition towards drought-tolerant tree species (for example, Quercus pubescens). For adult trees, the understorey had a minor effect on growth. Under future climate change scenarios, increasing drought frequency and intensity resulted in large-scale mortality of canopy trees, which intensified the competitive interaction between the understorey and tree regeneration. At the driest landscape positions, a complete exclusion of tree regeneration and a shift towards an open, savannah-like vegetation occurred. Overall, our results demonstrate that water competition by the herbaceous understorey can cause long-lasting legacy effects on forest structure and composition across drought-prone landscapes, by affecting the vulnerable recruitment phase. Ignoring herbaceous vegetation may thus lead to a strong underestimation of future drought impacts on forests.  相似文献   

20.
The composition of herbaceous vegetation was evaluated with the aim of characterizing forests at various ages of stand development. Herb stems were sampled in 250 4‐m² square plots distributed within six habitat types. A total of 36 herb species belonging to 15 families were recorded. Species richness did not significantly differ between habitat types. Most herb species occurred in all habitat types and were therefore generalists. However, a few indicator herb species were detected, and the results roughly suggested that herb species of the families Poaceae and Araceae were indicative of late successional forests; Zingiberaceae are indicative of early successional forests; and Commelinaceae, Costaceae, Cyperaceae and Marantaceae are indicators of flooded habitats. Species diversity and stem density of herbaceous plants did not change with forest succession as a decrease in abundance and frequency of occurrence of pioneer species in late successional forests was counterbalanced by the presence of generalist and late successional species. However, increasing proportions of dwarf stems in late successional forests translated to changes in the vertical structure of herbaceous plant communities. Herbivory pressure by gorillas did not have a notable effect on herbaceous plant community development. This study contributes to the definition of herbaceous ecological indicators of forest succession in different settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号