首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondrial DNA disorders are an important cause of neurological disease, yet despite our awareness of the importance of these conditions, relatively little is known about the neuropathology of these disorders and even less about the mechanisms involved in neuronal dysfunction and death. In this review we detail important features from neuropathological studies available and highlight deficiencies that are currently limiting our understanding of mitochondrial DNA disease. We also discuss possible future approaches that might resolve some of these outstanding issues. Further study of these disorders is critical because mitochondria play a central role in neuronal survival and it is likely that an understanding of the mechanisms involved in neuronal dysfunction and cell death in mitochondrial DNA disease may have implications for other neurodegenerative diseases.  相似文献   

2.
线粒体是存在于绝大多数真核细胞内的一种基本的重要的细胞器,其具有相对独立的遗传系统。线粒体基因在真核生物具有高保守性,线粒体DNA(mtDNA)已被广泛应用于发病机理、临床诊断、遗传变异、生物进化等多方面的研究。1981年,Anderson用氯化铯密度梯度分离得到线粒体DNA(mtDNA),进行了全序列分析。此后,mtDNA的研究日益得到重视。已有的mtDNA提取方法概括起来可分为密度梯度离心法、酶消化法、柱层析法、氯化铯超速离心法、碱变性法和改进高盐沉淀法等,通过对以上方法的比较,发现改进高盐沉淀法具有简便、经济、易重复等优点。  相似文献   

3.
一种棉花线粒体DNA的提取方法   总被引:2,自引:0,他引:2  
线粒体是重要的细胞器,它有自身的基因组。其基因组DNA与细胞核基因组DNA相比,含量较低。棉花当中富含棉酚、丹宁等物质,这对提取DNA有很大的影响。因此我们根据棉花自身的特点,找到了一种提取棉花线粒体DNA经济有效的方法,其质量可以满足限制性酶切、PCR、分子杂交等实验的要求。  相似文献   

4.
线粒体DNA( mtDNA)分析在揭示物种亲缘关系、遗传比较、系统进化和遗传结构等领域的研究中得到了广泛的应用,尤其是在海洋动物的遗传结构研究中发挥了重要的作用.介绍线粒体DNA的结构特征、多态性研究方法,并对其在海洋动物群体遗传结构研究中的应用进行了综述.  相似文献   

5.
6.
The purpose of this study was to determine the relationship between mitochondrial DNA (mtDNA) deletions, mtDNA content and aging in rhesus monkeys. Using 2 sets of specific primers, we amplified an 8 kb mtDNA fragment covering a common 5.7 kb deletion and the entire 16.5 kb mitochondrial genome in the brain and buffy-coats of young and aged monkeys. We studied a total of 66 DNA samples: 39 were prepared from a buffy-coat and 27 were prepared from occipital cortex tissues. The mtDNA data were assessed using a permutation test to identify differences in mtDNA, in the different monkey groups. Using real-time RT-PCR strategy, we also assessed both mtDNA and nuclear DNA levels for young, aged and male and female monkeys. We found a 5.7 kb mtDNA deletion in 81.8% (54 of 66) of the total tested samples. In the young group of buffy-coat DNA, we found 5.7 kb deletions in 7 of 17 (41%), and in the aged group, we found 5.7 kb deletions in 12 of 22 (54%), suggesting that the prevalence of mtDNA deletions is related to age. We found decreased mRNA levels of mtDNA in aged monkeys relative to young monkeys. The increases in mtDNA deletions and mtDNA levels in aged rhesus monkeys suggest that damaged DNA accumulates as rhesus monkeys age and these altered mtDNA changes may have physiological relevance to compensate decreased mitochondrial function.  相似文献   

7.

Background

Obstructive Sleep Apnea (OSAS) is a disease associated with the increase of cardiovascular risk and it is characterized by repeated episodes of Intermittent Hypoxia (IH) which inducing oxidative stress and systemic inflammation. Mitochondria are cell organelles involved in the respiratory that have their own DNA (MtDNA). The aim of this study was to investigate if the increase of oxidative stress in OSAS patients can induce also MtDNA alterations.

Methods

46 OSAS patients (age 59.27 ± 11.38; BMI 30.84 ± 3.64; AHI 36.63 ± 24.18) were compared with 36 control subjects (age 54.42 ± 6.63; BMI 29.06 ± 4.7; AHI 3.8 ± 1.10). In blood cells Content of MtDNA and nuclear DNA (nDNA) was measured in OSAS patients by Real Time PCR. The ratio between MtDNA/nDNA was then calculated. Presence of oxidative stress was evaluated by levels of Reactive Oxygen Metabolites (ROMs), measured by diacron reactive oxygen metabolite test (d-ROM test).

Results

MtDNA/nDNA was higher in patients with OSAS than in the control group (150.94 ± 49.14 vs 128.96 ± 45.8; p = 0.04), the levels of ROMs were also higher in OSAS subjects (329.71 ± 70.17 vs 226 ± 36.76; p = 0.04) and they were positively correlated with MtDNA/nDNA (R = 0.5, p < 0.01).

Conclusions

In OSAS patients there is a Mitochondrial DNA damage induced by the increase of oxidative stress. Intermittent hypoxia seems to be the main mechanism which leads to this process.  相似文献   

8.
The mechanism by which we age has sparked a huge number of theories, and is an area of intense debate. As the elderly population rises, the importance of elucidating these mechanisms is becoming more apparent as age is the single biggest risk factor for a number of diseases such as cancer, diabetes and neurodegenerative disease. Mitochondrial DNA (MtDNA) mutations have been shown to accumulate in cells and tissues during the ageing process; however the question as to whether these mutations have a causal role in the ageing process remains an area of uncertainty. Here we review the current literature, and discuss the evidence for and against a causal role of mtDNA mutations in ageing and in the pathogenesis of age-related disease.  相似文献   

9.
Summary The mitochondrial genomes of five rapeseed somatic hybrid plants, which combine in a first experimentBrassica napus chloroplasts and a cytoplasmic male sterility trait coming fromRaphanus sativus, and in a second experiment chloroplasts of a triazine resistantB. compestris and a cytoplasmic male sterility trait fromR. sativus, were analyzed by restriction endonucleases. Restriction fragment patterns indicate that these genomes differ from each other and from both parents. The presence of new bands in the somatic hybrid mitochondrial DNA restriction patterns is evidence of mitochondrial recombination in somatic hybrid cells. In both parental and somatic hybrid plants large quantitative variations in a mitochondrial plasmid-like DNA have been observed. Our results suggest that the cytoplasmic support for male sterility is located in the chromosomal mitochondrial DNA instead of the plasmid-like DNA.  相似文献   

10.
线粒体DNA(mitochondrial DNA mtDNA)的异质性自从被发现以来,一直被遗传学、进化学、发育遗传学以及法医遗传学、分子生物学领域所重视。由于线粒体异质性的存在,使得很多涉及疾病、进化、系统发育线粒体基因组与核基因组的相互作用关系、线粒体DNA复制机制以及法医学运用线粒体DNA进行实际案件评估的问题变得复杂化。此外线粒体DNA异质性的发生原因以及对线粒体异质性的检测方法标准化问题还没有一个统一的答案。针对线粒体DNA异质性带来的种种问题,近年来国内外取得了不少研究进展。  相似文献   

11.
12.
Mitochondrial DNA plays a crucial role in cellular homeostasis; however, the molecular mechanisms underlying mitochondrial DNA inheritance and propagation are only beginning to be understood. To ensure the distribution and propagation of the mitochondrial genome, mitochondrial DNA is packaged into macromolecular assemblies called nucleoids, composed of one or more copies of mitochondrial DNA and associated proteins. We review current research on the mitochondrial nucleoid, including nucleoid-associated proteins, nucleoid dynamics within the cell, potential mechanisms to ensure proper distribution of nucleoids, and the impact of nucleoid organization on mitochondrial dysfunction. The nucleoid is the molecular organizing unit of mitochondrial genetics, and is the site of interactions that ultimately determine the bioenergetic state of the cell as a whole. Current and future research will provide essential insights into the molecular and cellular interactions that cause bioenergetic crisis, and yield clues for therapeutic rescue of mitochondrial dysfunction.  相似文献   

13.
神经肌肉性疾病患者线粒体DNA突变的分析   总被引:1,自引:0,他引:1  
魏丽珠  伏洁 《遗传》1998,20(2):13-15
为了探讨神经肌肉性疾病的发病与线粒体DNA突变的关系,采用PCR技术检测了20例患有不同神经肌肉性疾病儿童的外周血和骨骼肌细胞中的线粒体DNA(mtDNA),发现其中6例患儿有mtDNA缺失,其中1例至少有2968bp片段的缺失,另5例至少有2000bp片段的缺失,此缺失区位于线粒体呼吸链复合物1、4、5、编码区,表明该突变对神经肌肉性疾病的发生有一定作用。  相似文献   

14.
Mitochondrial DNA(mtDNA) analysis with restriction enzymes, Hae III, Hind III and Msp I was performed in 17Exophiala moniliae strains. The results were as follows: (1)E. moniliae could be classified into 10 types based on restriction patterns, (2)E. moniliae is suggested to be a complex organism because of extensive mtDNA polymorphism among strains likeE. jeanselmei and (3) two types ofE. moniliae are identical with two types ofE. jeanselmei. These results suggest thatE. moniliae is not genetically defined fromE. jeanselmei and the taxonomical status ofE. moniliae requires reevaluation  相似文献   

15.
Large-scale deletions and tRNA point mutations in mitochondrial DNA (mtDNA) are associated with a variety of different mitochondrial encephalomyopathies. Skeletal muscle in these patients shows a typical pathology, characterized by the focal accumulation of large numbers of morphologically and biochemically abnormal mitochondria (ragged-red fibers). Both mtDNA deletions and tRNA point mutations impair mitochondrial translation and produce deficiencies in oxidative phosphorylation. However, mutant and wild-type mtDNAs co-exist (mtDNA heteroplasmy) and the translation defect is not expressed until the ratio of mutant: wild-type mtDNAs exceeds a specific threshold. Below the threshold the phenotype can be rescued by intramitochondrial genetic complementation. The mosaic expression of the skeletal muscle pathology is thus determined by both the cellular and organellar distribution of mtDNA mutants.  相似文献   

16.
选用14种限制性内切酶对分布在中国大陆部分地区的Drosophilaimmigrans果蝇种群的线粒体DNA(mtDNA)限制性片段长度多态性(RFLP)进行了分析。在6个地理种群的46个单雌系中仅检测到11种限制性类型。表征种群内均一程度的I值平均为0.833。衡量种群间等同程度的J值平均为0.797。在整个种群中只有16.8%(Gst)的变异是由种群间变异所引起的。说明分布在中国大陆部分地区的D.immigrans果蝇的遗传组成均一程度高,遗传多态程度低,遗传变异贫乏。由UPG法分析6个种群的净遗传距离,显示了分布在秦岭华阳种群(HY)的特殊性。推测D.immigrans果蝇扩散到云南的高海拔地区可能是较晚发生的事件。并推测中国大陆的D.immigrans种群比分布在中国台湾,日本的种群原始。  相似文献   

17.
Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5–25 μg/cm2) or H2O2 (100–250 μm)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317–323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1−/− mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.  相似文献   

18.
Mitochondrial DNA polymorphism in male-sterile cytoplasm of rice   总被引:4,自引:0,他引:4  
Summary Mitochondrial DNAs (mtDNAs) were isolated and purified from ten strains of rice plants with male-sterile cytoplasm. The mtDNAs were digested with the restriction endonuclease PstI and the fragment patterns produced were analysed by 0.7% agarose gel electrophoresis. Restriction fragment length polymorphism was observed among the mtDNAs analysed; there were seven different patterns for the ten examined. Our results indicate that there are a variety of mtDNAs in cytoplasmically male-sterile rice.  相似文献   

19.
The small, maternally inherited mitochondrial DNA (mtDNA) has turned out to be a hotbed of pathogenic mutations: 15 years into the era of ‘mitochondrial medicine’, over 150 pathogenic point mutations and countless rearrangements have been associated with a variety of multisystemic or tissue-specific human diseases. MtDNA-related disorders can be divided into two major groups: those due to mutations in genes affecting mitochondrial protein synthesis in toto and those due to mutations in specific protein-coding genes. Here we review the mitochondrial genetics and the clinical features of the mtDNA-related diseases.  相似文献   

20.
Mitochondrial DNA damage and the aging process: facts and imaginations   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号