首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissociated stage 21–28 chick embryo limb bud cells showed an increasing ability to produce cartilage colonies in vitro with in vivo maturation. In addition dissociated stage 21–28 chick embryo limb bud cells exposed to cartilage conditioned medium continuously or only for 48 hr prior to subculture showed an enhanced (as much as 15-fold) ability to form differentiated cartilage colonies. By this criterion, cells were more responsive to conditioned medium prior to stage 25. Conditioned medium from fibroblast cultures caused an inhibition of cartilage colony formation, suggesting that the effect is cell-type specific. Besides increasing cartilage colony formation by enhanced cell survival, the incorporation of S35O4 into isolated glycosaminoglycans is also stimulated when limb bud cells are exposed to cartilage conditioned medium. The results support a model for cell differentiation which involves the enhancement of a particular differentiated capacity by a diffusible cell-type-specific macromolecule.  相似文献   

2.
The onlay cartilage grafting technique is described for treatment of unilateral or bilateral cleft lip nasal deformities. The alar cartilage is exposed through rim and intercartilagenous incisions. The cephalic half of the alar cartilage is excised, similar to the technique of traditional tip rhinoplasty. The harvested cartilage is applied to the intact caudal cartilage in layered fashion and secured with absorbable sutures. If necessary, successive layers may be added. These grafts provide a sturdy, yet delicate framework for a more normal appearing alar rim. We have performed this procedure on 16 patients, ages 10 to 41. Follow-up intervals range from 13 to 40 months, with a mean of 19 months. Results have been rated good-to-excellent by patients and surgeons. There has been no recurrence of the deformity. The only complication has been one nasal vestibule synechia.  相似文献   

3.
High concentrations of cryoprotective agents (CPA) are required during articular cartilage cryopreservation but these CPAs can be toxic to chondrocytes. Reactive oxygen species have been linked to cell death due to oxidative stress. Addition of antioxidants has shown beneficial effects on chondrocyte survival and functions after cryopreservation. The objectives of this study were to investigate (1) oxidative stress experienced by chondrocytes and (2) the effect of antioxidants on cellular reactive oxygen species production during articular cartilage exposure to high concentrations of CPAs. Porcine cartilage dowels were exposed to a multi-CPA solution supplemented with either 0.1 mg/mL chondroitin sulfate or 2000 μM ascorbic acid, at 4 °C for 180 min (N = 7). Reactive oxygen species production was measured with 5 μM dihydroethidium, a fluorescent probe that targets reactive oxygen species. The cell viability was quantified with a dual cell membrane integrity stain containing 6.25 μM Syto 13 + 9 μM propidium iodide using confocal microscopy. Supplementation of CPA solutions with chondroitin sulfate or ascorbic acid resulted in significantly lower dihydroethidium counts (p < 0.01), and a lower decrease in the percentage of viable cells (p < 0.01) compared to the CPA-treated group without additives. These results indicated that reactive oxygen species production is induced when articular cartilage is exposed to high CPA concentrations, and correlated with the amount of dead cells. Both chondroitin sulfate and ascorbic acid treatments significantly reduced reactive oxygen species production and improved chondrocyte viability when articular cartilage was exposed to high concentrations of CPAs.  相似文献   

4.
Collagen degradation is one of the early signs of osteoarthritis. It is not known how collagen degradation affects chondrocyte volume and morphology. Thus, the aim of this study was to investigate the effect of enzymatically induced collagen degradation on cell volume and shape changes in articular cartilage after a hypotonic challenge. Confocal laser scanning microscopy was used for imaging superficial zone chondrocytes in intact and degraded cartilage exposed to a hypotonic challenge. Fourier transform infrared microspectroscopy, polarized light microscopy, and mechanical testing were used to quantify differences in proteoglycan and collagen content, collagen orientation, and biomechanical properties, respectively, between the intact and degraded cartilage. Collagen content decreased and collagen orientation angle increased significantly (p < 0.05) in the superficial zone cartilage after collagenase treatment, and the instantaneous modulus of the samples was reduced significantly (p < 0.05). Normalized cell volume and height 20 min after the osmotic challenge (with respect to the original volume and height) were significantly (p < 0.001 and p < 0.01, respectively) larger in the intact compared to the degraded cartilage. These findings suggest that the mechanical environment of chondrocytes, specifically collagen content and orientation, affects cell volume and shape changes in the superficial zone articular cartilage when exposed to osmotic loading. This emphasizes the role of collagen in modulating cartilage mechanobiology in diseased tissue.  相似文献   

5.
A model system of explanted cartilage has been used in vitro to determine whether insulin-like growth factor 1 (IGF 1), which promotes matrix formation is effective in the presence of cytokines such as interleukin 1 (IL1) and tumour necrosis factor (TNF), which induce net matrix depletion. IGF 1 induced a dose-dependent 2.5-fold stimulation of proteoglycan synthesis, with a half-maximal dose of 25 ng/ml. A similar relative increase occurred in response to IGF 1 (10-100 ng/ml) in cartilage cultured also with IL1 or TNF (5-500 pM). There was no detectable qualitative change in the average molecular size or charge of the aggregating proteoglycan synthesized by explants exposed to IGF 1 alone or with IL1 or TNF. The increased production of prostaglandin E2, which is initiated when IL1 or TNF bind to the chondrocytes, was the same in the presence or absence of IGF 1. The time taken for 50% of pre-labelled proteoglycan to be released from the explants (t1/2) increased in the presence of IGF 1 (100 ng/ml) from 21 to 32 days in control cultures and from 8 to 26 days in cartilage cultured with IL1 (50 pM). It is concluded that IGF 1 enhances the synthesis of aggregating proteoglycan in cartilage exposed to cytokines and can directly decrease both the basal and the cytokine-stimulated degradation of proteoglycan in cartilage.  相似文献   

6.
In this study, computational fluid dynamics (CFD) analysis of a rotating-wall perfused-vessel (RWPV) bioreactor is performed to characterize the complex hydrodynamic environment for the simulation of cartilage development in RWPV bioreactor in the presence of tissue-engineered cartilage constructs, i.e., cell-chitosan scaffolds. Shear stress exerted on chitosan scaffolds in bioreactor was calculated for different rotational velocities in the range of 33-38 rpm. According to the calculations, the lateral and lower surfaces were exposed to 0.07926-0.11069 dyne/cm(2) and 0.05974-0.08345 dyne/cm(2), respectively, while upper surfaces of constructs were exposed to 0.09196-0.12847 dyne/cm(2). Results validate adequate hydrodynamic environment for scaffolds in RWPV bioreactor for cartilage tissue development which concludes the suitability of operational conditions of RWPV bioreactor.  相似文献   

7.
Growth retardation is a feature of several diseases associated with chronic hemolysis (i.e., uremia and the hemoglobinopathies). Although the growth failure is undoubtedly multifactorial, circulating hemoglobin (Hb) may inhibit cartilage growth directly. We tested this hypothesis using the hypophysectomized rat costal cartilage sulfation bioassay and the embryonic chicken pelvic rudiment bioassay, both very sensitive to growth factors and growth inhibitors. In the rat bioassay, Hb produced a dose-dependent inhibition of both basal and normal rat serum (NRS)-stimulated 35SO4 uptake. In the chick bioassay, NRS stimulated cartilage growth as expected, but Hb severely inhibited both basal and NRS-stimulated growth. However, after the cartilages were preincubated with Hb for 2 days, subsequent exposure to NRS allowed them to resume growth at the same rate as cartilage exposed to NRS for the entire 5 days. The growth inhibition could be accounted for by the heme contained in Hb. We conclude that Hb produces a dose-dependent and reversible inhibition of cartilage growth and may contribute to the growth retardation associated with chronic hemolytic conditions.  相似文献   

8.
The growth, maintenance and ossification of cartilage are fundamental to skeletal development and are regulated throughout life by the mechanical cues that are imposed by physical activities. Finite element computer analyses have been used to study the role of local tissue mechanics on endochondral ossification patterns, skeletal morphology and articular cartilage thickness distributions. Using single-phase continuum material representations of cartilage, the results have indicated that local intermittent hydrostatic pressure promotes cartilage maintenance. Cyclic tensile strains (or shear), however, promote cartilage growth and ossification. Because single-phase material models cannot capture fluid exudation in articular cartilage, poroelastic (or biphasic) solid/fluid models are often implemented to study joint mechanics. In the middle and deep layers of articular cartilage where poroelastic analyses predict little fluid exudation, the cartilage phenotype is maintained by cyclic fluid pressure (consistent with the single-phase theory). In superficial articular layers the chondrocytes are exposed to tangential tensile strain in addition to the high fluid pressure. Furthermore, there is fluid exudation and matrix consolidation, leading to cell 'flattening'. As a result, the superficial layer assumes an altered, more fibrous phenotype. These computer model predictions of cartilage mechanobiology are consistent with results of in vitro cell and tissue and molecular biology experiments.  相似文献   

9.
The calcified-noncalcified cartilage interface: the tidemark   总被引:1,自引:0,他引:1  
Tidemark is an interface which may better be defined by biochemical methods than by morphology. It originates, by chondrocyte activity, between calcified and noncalcified cartilage layers of any kind, hyaline or fibrous, in areas exposed to either loading (joint) or pulling (insertion). In the articular cartilage it appears with skeletal maturation, in other localizations it is age-independent. It should be regarded as a special instance of a broader phenomenon of the calcification/mineralization front. Inside the joint cartilage its changes reflect the slow remodelling of the calcified layer and its inapparent shift towards the surface of the articular cartilage. In the marginal transitional zone of the joint, tidemark smoothly passes into the periosteum. Chondrocytes on both sides of the tidemark are positive for alkaline phosphatase and the positive reaction continuously goes on to the periosteum.  相似文献   

10.
Computational fluid dynamics (CFD) models to quantify momentum and mass transport under conditions of tissue growth will aid bioreactor design for development of tissue-engineered cartilage constructs. Fluent CFD models are used to calculate flow fields, shear stresses, and oxygen profiles around nonporous constructs simulating cartilage development in our concentric cylinder bioreactor. The shear stress distribution ranges from 1.5 to 12 dyn/cm(2) across the construct surfaces exposed to fluid flow and varies little with the relative number or placement of constructs in the bioreactor. Approximately 80% of the construct surface exposed to flow experiences shear stresses between 1.5 and 4 dyn/cm(2), validating the assumption that the concentric cylinder bioreactor provides a relatively homogeneous hydrodynamic environment for construct growth. Species mass transport modeling for oxygen demonstrates that fluid-phase oxygen transport to constructs is uniform. Some O(2) depletion near the down stream edge of constructs is noted with minimum pO(2) values near the constructs of 35 mmHg (23% O(2) saturation). These values are above oxygen concentrations in cartilage in vivo, suggesting that bioreactor oxygen concentrations likely do not affect chondrocyte growth. Scale-up studies demonstrate the utility and flexibility of CFD models to design and characterize bioreactors for growth of tissue-engineered cartilage.  相似文献   

11.
The influence of magnetic resonance imaging (MRI) devices at high field strengths on living tissues is unknown. We investigated the effects of a 3-tesla electromagnetic field (EMF) on the biosynthetic activity of bovine articular cartilage. Bovine articular cartilage was obtained from juvenile and adult animals. Whole joints or cartilage explants were subjected to a pulsed 3-tesla EMF; controls were left unexposed. Synthesis of sulfated glycosaminoglycans (sGAGs) was measured by using [35S]sulfate incorporation; mRNA encoding the cartilage markers aggrecan and type II collagen, as well as IL-1β, were analyzed by RT–PCR. Furthermore, effects of the 3-tesla EMF were determined over the course of time directly after exposure (day 0) and at days 3 and 6. In addition, the influence of a 1.5-tesla EMF on cartilage sGAG synthesis was evaluated. Chondrocyte cell death was assessed by staining with Annexin V and TdT-mediated dUTP nick end labelling (TUNEL). Exposure to the EMF resulted in a significant decrease in cartilage macromolecule synthesis. Gene expression of both aggrecan and IL-1β, but not of collagen type II, was reduced in comparison with controls. Staining with Annexin V and TUNEL revealed no evidence of cell death. Interestingly, chondrocytes regained their biosynthetic activity within 3 days after exposure, as shown by proteoglycan synthesis rate and mRNA expression levels. Cartilage samples exposed to a 1.5-tesla EMF remained unaffected. Although MRI devices with a field strength of more than 1.5 T provide a better signal-to-noise ratio and thereby higher spatial resolution, their high field strength impairs the biosynthetic activity of articular chondrocytes in vitro. Although this decrease in biosynthetic activity seems to be transient, articular cartilage exposed to high-energy EMF may become vulnerable to damage.  相似文献   

12.
We have developed a novel mechanically active cartilage culture device capable of modulating the interplay between compression and shear, at physiologic stress levels (2-5 MPa). This triaxial compression culture system subjects cylindrical cartilage explants to pulsatile axial compression from platen contact, plus pulsatile radially transverse compression from external fluid compression. These compressive loads can be independently modulated to impose stress states that resemble normal physiologic loading, and to investigate perturbations of individual components of the multi-axial stress state, such as increased shear stress. Based on the observation that joint incongruity predisposes cartilage to premature degeneration, we hypothesized that cartilage extracellular matrix (ECM) synthesis would be inhibited under conditions of low transverse buttressing (high shear stress). To test this hypothesis, we compared ECM synthesis in human cartilage explants exposed to axial compression without transverse compression (high shear stress), versus explants exposed to axial compression plus an equal level of transverse compression (low shear stress). Both total (35)SO(4) incorporation and aggrecan-specific (35)SO(4) incorporation were significantly inhibited by axial compression, relative to axial plus transverse compression.  相似文献   

13.
We present a mathematical simulation which integrates the mechanisms that are currently believed to govern the concentration of the growth factor, IGF1, in cartilage. Articular cartilage is treated as a two-layer continuum: a thin surface layer, exposed to synovial fluid, with a higher cell density, and a deeper layer with impermeable bony endplate. A system of differential equations accounts for diffusion of IGF1 from synovial fluid into, and throughout, the cartilage; IGF1 synthesis, its reactions with soluble binding protein, with cell receptors, and with immobile binding sites on the extracellular matrix. We have collected all available physiologic data relevant to the solution of these equations and used it to compute numerical solutions that yield time dependent profiles for free and complex IGF1 throughout the depth of normal cartilage. Equations for osteoarthritic cartilage were formulated as well. Numerical results indicate a time-scale of several days for IGF1 profiles to settle down after a disturbance. The number of cell receptors for IGF1 appears to be more important than their rate of internalization. There is a lower bound to the number of cell receptors and of immobile binding sites. Parameters that await experimental determination are identified.  相似文献   

14.
The disordered production of inorganic pyrophosphate (PPi) by articular cartilage is thought to have an important role in the pathogenesis of calcium pyrophosphate dihydrate deposition disease and perhaps osteoarthritis. We have previously shown that fetal calf serum added to the culture media of porcine articular cartilage explants increases the elaboration of PPi into the ambient media. We have examined this PPi stimulatory activity by studying the effects of adult human serum (HS), serum derived from adult human plasma (HP), and an acid-alcohol extract of human platelets (PE) on PPi production in cartilage organ culture. Ten percent HS produces a 1.4-fold increase in PPi production after 48 h of culture, while cartilage incubated in media containing 10% HP produces no more PPi than that incubated in media alone. PE stimulates a mean 2-fold increase in PPi production at 48 h in the presence of low concentrations of HP, and has no effect alone. It does not appear to up-regulate the activity of the ectoenzyme nucleoside triphosphate pyrophosphohydrolase (NTPPPH), nor does it promote the release of enzyme substrate into the extracellular space. Cartilage exposed to 0.5% HP and PE has 1.51 +/- 0.36 units of NTPPPH activity whereas cartilage exposed to 0.5% HP alone has 1.52 +/- 0.41 units of enzyme activity. PE does not increase the release of [14C]adenine-labeled compounds into the media. Approximately 13% of soluble 14C counts was found in the media of chondrocytes treated with PE while 18% of counts was released in the presence of HP alone. We have demonstrated a factor or factors present in FCS, HS, and an acid-ethanol extract of human platelets which represent(s) the first known physiologic modulators of PPi production in articular cartilage and may increase PPi production without affecting NTPPPH activity.  相似文献   

15.
In articular hyaline cartilage, chondrocytes are surrounded by an extracellular matrix which is mainly composed by collagen and proteoglycanes. Pathological specimens show a partial or complete degradation of this matrix. Therefore, it could be interesting to know how mechanical or biochemical constraints applied to cartilage specimens induce modifications of the cartilage network. Multiphoton technology combined to Second Harmonic Generation (SHG) enables to image cartilage specimens in a non-invasive mode with high resolution at deep penetration. By placing a band pass filter in front of the transmitted light detector, SHG signal with frequency doubled can be isolated for a new contrast imaging. SHG (second harmonic generation) is a diffusion process generated from organized structures and does not need any fluorescent staining. Due to their non-centrosymetric structure, collagen fibrilles present a high second-order non-linear susceptibility and thus give rise to a strong SHG signal when exposed to high enough electric fields produced by a focal point of a femtosecond pulsed laser (multiphoton microscopy). As the extracellular matrix of cartilage is in part constituted by collagen fibers, it can be imaged with this contrast tool. The intensity of SHG signals strongly depends on the organization of collagen fibers. Thus a modification of the extracellular matrix in terms of 3D-organization of collagen induced by mechanical stress can be shown with this contrast tool.  相似文献   

16.
Treatment of osteoarthritis (OA) with nonsteroidal anti-inflammatory drugs (NSAIDs) diminishes inflammation along with mediators of cartilage destruction. However, NSAIDs may exert adverse direct effects on cartilage, particularly if treatment is prolonged. We therefore compared the direct effects of indomethacin, naproxen, aceclofenac and celecoxib on matrix turnover in human OA cartilage tissue. Human clinically defined OA cartilage from five different donors was exposed for 7 days in culture to indomethacin, naproxen, aceclofenac and celecoxib--agents chosen based on their cyclo-oxygenase (COX)-2 selectivity. As a control, SC-560 (a selective COX-1 inhibitor) was used. Changes in cartilage proteoglycan turnover and prostaglandin E2 production were determined. OA cartilage exhibited characteristic proteoglycan turnover. Indomethacin further inhibited proteoglycan synthesis; no significant effect of indomethacin on proteoglycan release was found, and proteoglycan content tended to decrease. Naproxen treatment was not associated with changes in any parameter. In contrast, aceclofenac and, prominently, celecoxib had beneficial effects on OA cartilage. Both were associated with increased proteoglycan synthesis and normalized release. Importantly, both NSAIDs improved proteoglycan content. Inhibition of prostaglandin E2 production indirectly showed that all NSAIDs inhibited COX, with the more COX-2 specific agents having more pronounced effects. Selective COX-1 inhibition resulted in adverse effects on all parameters, and prostaglandin E2 production was only mildly inhibited. NSAIDs with low COX-2/COX-1 selectivity exhibit adverse direct effects on OA cartilage, whereas high COX-2/COX-1 selective NSAIDs did not show such effects and might even have cartilage reparative properties.  相似文献   

17.
It is known that beta-D-xylosides interfere with the proteoglycan synthesis in several tissues. A possible influence of this disturbed synthesis on the matrix formation of bone and cartilage has not been described light microscopically. In the present study we used 10-day-old chicken embryos which were exposed in ovo to a final concentration of 0.5 mM beta-D-xyloside. After 3, 6, 9, 20, 25, 31, 35 and 40 days, lengths of several skeletal elements were determined and the middle metatarsal bones were processed for light microscopical demonstration of acidic groups. The results demonstrate that beta-D-xyloside inhibits growth of long bones and induces synthesis of a cartilage matrix with a very low concentration of chondroitin sulphate. It has no noticeable influence on the amount of acidic groups in the organic bone matrix. Despite the absence of chondroitin sulphate, the cartilage matrix becomes mineralized normally.  相似文献   

18.
Pham A  Hull ML 《Journal of biomechanics》2007,40(14):3223-3229
When used in in vitro studies, soft tissues such as the meniscus and articular cartilage are susceptible to dehydration and its effects, such as changes in size and shape as well as changes in structural and material properties. To quantify the effect of dehydration on the meniscus and articular cartilage, the first two objectives of this study were to (1) determine the percent change in meniscal dimensions over time due to dehydration, and (2) determine the percent change in articular cartilage thickness due to dehydration. To satisfy these two objectives, the third objective was to develop a new laser-based three-dimensional coordinate digitizing system (3-DCDS II) that can scan either the meniscus or articular cartilage surface within a time such that there is less than a 5% change in measurements due to dehydration. The new instrument was used to measure changes in meniscal and articular cartilage dimensions of six cadaveric specimens, which were exposed to air for 120 and 130 min, respectively. While there was no change in meniscal width, meniscal height decreased linearly by 4.5% per hour. Articular cartilage thickness decreased nonlinearly at a rate of 6% per hour after 10 min, and at a rate of 16% per hour after 130 min. The system bias and precision of the new instrument at 0 degrees slope of the surface being scanned were 0.0 and 2.6 microm, respectively, while at 45 degrees slope the bias and precision were 31.1 and 22.6 microm, respectively. The resolution ranged between 200 and 500 microm. Scanning an area of 60 x 80 mm (approximately the depth and width of a human tibial plateau) took 8 min and a complete scan of all five sides of a meniscus took 24 min. Thus, the 3-DCDS II can scan an entire meniscus with less than 2% change in dimensions due to dehydration and articular cartilage with less than 0.4% change. This study provides new information on the amount of time that meniscal tissue and articular cartilage can be exposed to air before marked changes in size and shape, and possibly biomechanical, structural and material properties, occur. The new 3-DCDS II designed for this study provides fast and accurate dimensional measurements of both soft and hard tissues.  相似文献   

19.
Endochondral ossification in the growth cartilage of long bones from the bullfrog Rana catesbeiana was examined. In stage-46 tadpoles and 1-year-old animals, the hypertrophic cartilage had a smooth contact with the bone marrow and the matrix showed no calcification or endochondral bone formation. In spite of showing no aspects of calcification, the chondrocytes exhibited alkaline phosphatase activity and some of them died by apoptosis. However, matrix calcification and endochondral ossification were observed in 2-year-old bullfrogs. Calcium deposits appeared as isolated or coalesced spherical structures in the extracellular matrix of hypertrophic cartilage. Bone trabeculae were restricted to the central area at the sites where the hypertrophic cartilage surface was exposed to the bone marrow. Cartilage matrix calcification and the formation of bone trabeculae were not dependent on each other. Osteoclasts were involved in calcified matrix resorption. These results demonstrate that the calcification of hypertrophic cartilage and the deposition of bone trabeculae are late events in R. catesbeiana and do not contribute to the development and growth of long bones in adults. These processes may play a role in reinforcing bony structures as the bullfrog gains weight in adulthood. In addition, the deposition of bone trabeculae is not dependent on cartilage matrix calcification.  相似文献   

20.
Recently discovered cartilaginous structures in the forehead of the sperm whale (Behrmann and Klima 1985) were investigated histologically. The largest and most important of these structures is the nasal roof cartilage which can be derived from the tectum nasi, a part of the embryonic nasal capsule (Klima et al. 1986). In the investigated sperm whale fetuses, this structure consists of embryonic hyaline cartilage which is well suited for morphogenetic processes and fast growth. In the investigated adult sperm whale, the originally hyaline cartilage has been transformed into a special kind of elastic cartilage. The arrangement of cells, territories, and extracellular substance resembles hyaline cartilage. This component represents an adaptation to pressure load. The appearance and arrangement of elastic fibres resembles elastic cartilage. This component is an adaptation to distortion forces. Obviously, pressure and distortion are the strongest mechanical strains that the nasal roof cartilage is exposed. We see the function of this cartilage structure therein that, being a pressure-elastic skeletal support and following the left nasal meatus along its whole extension through the massive and soft forehead, it secures the only direct respiratory passage. Additionally, fibre bundles of transversely striated muscles are anchored in the perichondrium of the nasal roof cartilage. The function of this delicately interwoven muscle system is seen by us in the fine tuning of contraction and dilatation of the respiratory passage. Moreover, a possible function as a sound conducting cartilaginous structure serving the echolocation system is considered (c.f. Pilleri et al. 1983).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号