首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pi1 is a 35-residue toxin cross-linked by four disulfide bridges that has been isolated from the venom of the chactidae scorpion Pandinus imperator. Due to its very low abundance in the venom, we have chemically synthesized this toxin in order to study its biological activity. Enzyme-based proteolytic cleavage of the synthetic Pi1 (sPi1) demonstrates half-cystine pairings between Cys4-Cys25, Cys10-Cys30, Cys14-Cys32 and Cys20-Cys35, which is in agreement with the disulfide bridge organization initially reported on the natural toxin. In vivo, intracerebroventricular injection of sPi1 in mice produces lethal effects with an LD50 of 0.2 microgram per mouse. In vitro, the application of sPi1 induces drastic inhibition of Shaker B (IC50 of 23 nM) and rat Kv1.2 channels (IC50 of 0.44 nM) heterologously expressed in Xenopus laevis oocytes. No effect was observed on rat Kv1.1 and Kv1.3 currents upon synthetic peptide application. Also, sPi1 is able to compete with 125I-labeled apamin for binding onto rat brain synaptosomes with an IC50 of 55 pM. Overall, these results demonstrate that sPi1 displays a large spectrum of activities by blocking both SK- and Kv1-types of K+ channels; a selectivity reminiscent of that of maurotoxin, another structurally related four disulfide-bridged scorpion toxin that exhibits a different half-cystine pairing pattern.  相似文献   

2.
A peptide called phaiodotoxin was isolated from the venom of the scorpion Anuroctonus phaiodactylus. It is lethal to crickets, but non toxic to mice at the doses assayed. It has 72 amino acid residues, with a molecular mass of 7971 atomic mass units. Its covalent structure was determined by Edman degradation and mass spectrometry; it contains four disulfide-bridges, of which one of the pairs is formed between cysteine-7 and cysteine-8 (positions Cys63-Cys71). The other three pairs are formed between Cys13-Cys38, Cys23-Cys50 and Cys27-Cys52. Comparative sequence analysis shows that phaiodotoxin belongs to the long-chain subfamily of scorpion peptides. Several genes coding for this peptide and similar ones were cloned by PCR, using cDNA prepared from the RNA of venomous glands of this scorpion. Electrophysiological assays conducted with this toxin in several mammalian cell lines (TE671, COS7, rat GH3 and cerebellum granular cells), showed no effect on Na+ currents. However, it shifts the voltage dependence of activation and inactivation of insect Na+ channels (para/tipE) to more negative and positive potentials, respectively. Therefore, the 'window' current is increased by 225%, which is thought to be the cause of its toxicity toward insects. Phaiodotoxin is the first toxic peptide ever purified from a scorpion of the family Iuridae.  相似文献   

3.
Maurotoxin (MTX) is a 34-amino acid polypeptide cross-linked by four disulfide bridges that has been isolated from the venom of the scorpion Scorpio maurus palmatus and characterized. Maurotoxin competed with radiolabeled apamin and kaliotoxin for binding to rat brain synaptosomes and blocked K+ currents from Kv1 channel subtypes expressed in Xenopus oocytes. Structural characterization of the synthetic toxin identified half-cystine pairings at Cys3-Cys24, Cys9-Cys29, Cys13-Cys19 and Cys31-Cys34 This disulfide bridge pattern is unique among known scorpion toxins, particularly the existence of a C-terminal '14-membered disulfide ring' (i.e. cyclic domain 31-34), We therefore studied structure-activity relationships by investigating the structure and pharmacological properties of synthetic MTX peptides either modified at the C-terminus ?i.e. MTX(1-29), [Abu31,34]-MTX and [Cys31,34, Tyr32]D-MTX) or mimicking the cyclic C-terminal domain [i.e. MTX(31-34)]. Unexpectedly, the absence of a disulfide bridge Cys31-Cys34 in [Abu 31,34]-MTX and MTX(1-29) resulted in MTX-unrelated half-cystine pairings of the three remaining disulfide bridges for the two analogs, which is likely to be responsible for their inactivity against Kv1 channel subtypes. Cyclic MTX(31-34) was also biologically inactive. [Cys31,34, Tyr32]D-MTX, which had a 'native', MTX-related, disulfide bridge organization, but a D-residue-induced reorientation of the C-terminal disulfide bridge, was potent at blocking the Kv1.1 channel. This peptide-induced Kv1.1 blockage was voltage-dependent (a property not observed for MTX), maximal in the low depolarization range and associated with on-rate changes in ligand binding. Thus, the cyclic C-terminal domain of MTX seems to be crucial for recognition of Kv1.3, and to a lesser extent, Kv1.2 channels and it may contribute to the stabilization and strength of the interaction between the toxin and the Kv1.1 channel.  相似文献   

4.
Maurocalcine (MCa) isolated from Scorpio maurus palmatus venom shares 82% sequence identity with imperatoxin A. Both scorpion toxins are putative mimics of the II-III loop peptide (termed peptide A (pA)) of alpha(1s)-dihydropyridine receptor and are thought to act at a common site on ryanodine receptor type 1 (RyR1) important for skeletal muscle EC coupling. The relationship between the actions of synthetic MCa (sMCa) and pA on RyR1 were examined. sMCa released Ca(2+) from SR vesicles (EC(50) = 17.5 nm) in a manner inhibited by micromolar ryanodine or ruthenium red. pA (0.5-40 microm) failed to induce SR Ca(2+) release. Rather, pA enhanced Ca(2+) loading into SR and fully inhibited Ca(2+)-, caffeine-, and sMCa-induced Ca(2+) release. The two peptides modified single channel gating behavior in distinct ways. With Cs(+)-carrying current, 10 nm to 1 microm sMCa induced long lived subconductances having 48% of the characteristic full open state and occasional transitions to 29% at either positive or negative holding potentials. In contrast, pA stabilized long lived channel closures with occasional burst transitions to 65% (s1) and 86% (s2) of the full conductance. The actions of pA and sMCa were observed in tandem. sMCa stabilized additional subconductance states proportional to pA-induced subconductances (i.e. 43% of pA-modified s1 and s2 substates), revealing a proportional gating mechanism. [(3)H]Ryanodine binding and surface plasmon resonance analyses indicated that the peptides did not interact by simple competition for a single class of mutually exclusive sites on RyR1 to produce proportional gating. The actions of sMCa were also observed with ryanodine-modified channels and channels deficient in immunophilin 12-kDa FK506-binding protein. These results provide evidence that sMCa and pA stabilize distinct RyR1 channel states through distinct mechanisms that allosterically stabilize gating states having proportional conductance.  相似文献   

5.
The three-dimensional solution structure of a novel peptide, Pi7, purified from the venom of the scorpion Pandinus imperator, and for which no specific receptor has been found yet, was determined by two-dimensional homonuclear proton NMR methods from a nanomole amount of compound using a nano-nmr probe. Pandinus imperator peptide 7 does not block voltage-dependent K(+)-channels and does not displace labeled noxiustoxin from rat brain synaptosomal membranes. The toxin has 38 amino acid residues and, similarly to Pi1, is stabilized by four disulfide bridges (Cys6-Cys27, Cys12-Cys32, Cys16-Cys34, and Cys22-Cys37). In addition, the lysine at position 26 crucial for potassium-channel blocking is replaced in Pi7 by an arginine. Tyrosine 34, equivalent to Tyr36 of ChTX is present, but the N-terminal positions 1 and 2 are occupied by two acidic residues Asp and Glu, respectively. The dihedral angles and distance restraints obtained from measured NMR parameters were used in structural calculations in order to determine the conformation of the peptide. The disulfide-bridge topology was established using distance restraints allowing ambiguous partners between S atoms combined with NMR-derived structural information. The structure is organized around a short alpha-helix spanning residues Thr9 to Thr20/Gly21 and a beta-sheet. These two elements of secondary structure are stabilized by two disulfide bridges, Cys12-Cys32 and Cys16-Cys34. The antiparallel beta-sheet is composed of two strands extending from Asn22 to Cys34 with a tight turn at Ile28-Asn29 in contact with the N-terminal fragment Ile4 to Cys6.  相似文献   

6.
Tityus kappa (Ts kappa), a novel toxin from the venom of the scorpion Tityus serrulatus, is a 35-residue polypeptide cross-linked by three disulphide bridges and acts on small-conductance calcium-activated potassium channels (SK channels). Ts K was chemically synthesized using the solid-phase method and characterized. The synthetic product, sTs kappa, was indistinguishable from the natural toxin when tested in vitro in competition assay with radiolabelled apamin for binding to rat brain synaptosomes (IC50 = 3 nM). The sTs kappa was further tested in vivo for lethal activity to mice following intracerebroventricular inoculation (LD50 = 70 ng per mouse). The half-cystine pairings were formerly established by enzyme-based cleavage of sTs kappa; they were between Cys7-Cys28, Cys13-CyS33 and Cys17-Cys35, which is a disulphide bridge pattern similar to that of other short scorpion toxins. According to previous studies on SK channel-acting toxins, the putative influence of certain basic residues of Ts kappa (i.e. Arg6, Arg9, Lys18, Lys19) in its pharmacological activity was investigated using synthetic point-mutated analogues of the toxin with an Ala substitution at these positions. Data from binding assay, together with conformational analysis of the synthetic analogues by 1H-NMR, suggest that Arg6, and to a lesser extent Arg9, are important residues for an high-affinity interaction of this toxin with SK channels; interestingly these residues are located outside the alpha-helical structure, whereas the pharmacologically important basic residues from other SK channel-specific toxins had been located inside the alpha-helix.  相似文献   

7.
Pi4 is a 38-residue toxin cross-linked by four disulfide bridges that has been isolated from the venom of the Chactidae scorpion Pandinus imperator. Together with maurotoxin, Pi1, Pi7 and HsTx1, Pi4 belongs to the alpha KTX6 subfamily of short four-disulfide-bridged scorpion toxins acting on K+ channels. Due to its very low abundance in venom, Pi4 was chemically synthesized in order to better characterize its pharmacology and structural properties. An enzyme-based cleavage of synthetic Pi4 (sPi4) indicated half-cystine pairings between Cys6-Cys27, Cys12-32, Cys16-34 and Cys22-37, which denotes a conventional pattern of scorpion toxin reticulation (Pi1/HsTx1 type). In vivo, sPi4 was lethal after intracerebroventricular injection to mice (LD50 of 0.2 microg per mouse). In vitro, addition of sPi4 onto Xenopus laevis oocytes heterologously expressing various voltage-gated K+ channel subtypes showed potent inhibition of currents from rat Kv1.2 (IC50 of 8 pm) and Shaker B (IC50 of 3 nm) channels, whereas no effect was observed on rat Kv1.1 and Kv1.3 channels. The sPi4 was also found to compete with 125I-labeled apamin for binding to small-conductance Ca(2+)-activated K+ (SK) channels from rat brain synaptosomes (IC50 value of 0.5 microm). sPi4 is a high affinity blocker of the Kv1.2 channel. The toxin was docked (BIGGER program) on the Kv channel using the solution structure of sPi4 and a molecular model of the Kv1.2 channel pore region. The model suggests a key role for residues Arg10, Arg19, Lys26 (dyad), Ile28, Lys30, Lys33 and Tyr35 (dyad) in the interaction and the associated blockage of the Kv1.2 channel.  相似文献   

8.
BmK-betaIT (previously named as Bm32-VI in the literature), an excitatory scorpion beta-toxin, is purified from the venom of the Chinese scorpion Buthus martensii Karsch. It features a primary sequence typical of the excitatory anti-insect toxins: two contiguous Cys residues (Cys37-Cys38) and a shifted location of the fourth disulfide bridges (Cys38-Cys64), and demonstrates bioactivity characteristic of the excitatory beta-toxins. However, it is noteworthy that BmK-betaIT is not conserved with a glutamate residue at the preceding position of the third Cys residue, and is the first example having a non-glutamate residue at the relevant position in the excitatory scorpion beta-toxin subfamily. The 3D structure of BmK-betaIT is determined with 2D NMR spectroscopy and molecular modeling. The solution structure of BmK-betaIT is closely similar to those of BmK IT-AP and Bj-xtrIT, only distinct from the latter by lack of an alpha(0)-helix. The surface functional patch comparison with those of BmK IT-AP and Bj-xtrIT reveals their striking similarity in the spatial arrangement. These results infer that the functional surface of beta-toxins is composed of two binding regions and a functional site. The main binding site is consisted of hydrophobic residues surrounding the alpha(1)-helix and its preceding loop, which is common to all beta-type scorpion toxins affecting Na(+) channels. The second binding site, which determines the specificity of the toxin, locates at the C-terminus for excitatory insect beta-toxin, while rests at the beta-sheet and its linking loop for anti-mammal toxins. The functional site involved in the voltage sensor-trapping model, which characterizes the function of all beta-toxins, is the negatively charged residue Glu15.  相似文献   

9.
Hemitoxin (HTX) is a new K+ channel blocker isolated from the venom of the Iranian scorpion Hemiscorpius lepturus. It represents only 0.1% of the venom proteins, and displaces [125 I]alpha-dendrotoxin from its site on rat brain synaptosomes with an IC50 value of 16 nm. The amino acid sequence of HTX shows that it is a 35-mer basic peptide with eight cysteine residues, sharing 29-69% sequence identity with other K+ channel toxins, especially with those of the alphaKTX6 family. A homology-based molecular model generated for HTX shows the characteristic alpha/beta-scaffold of scorpion toxins. The pairing of its disulfide bridges, deduced from MS of trypsin-digested peptide, is similar to that of classical four disulfide bridged scorpion toxins (Cys1-Cys5, Cys2-Cys6, Cys3-Cys7 and Cys4-Cys8). Although it shows the highest sequence similarity with maurotoxin, HTX displays different affinities for Kv1 channel subtypes. It blocks rat Kv1.1, Kv1.2 and Kv1.3 channels expressed in Xenopus oocytes with IC50 values of 13, 16 and 2 nM, respectively. As previous studies have shown the critical role played by the beta-sheet in Kv1.3 blockers, we suggest that Arg231 is also important for Kv1.3 versus Kv1.2 HTX positive discrimination. This article gives information on the structure-function relationships of Kv1.2 and Kv1.3 inhibitors targeting developing peptidic inhibitors for the rational design of new toxins targeting given K+ channels with high selectivity.  相似文献   

10.
The NMR structure of a new toxin, butantoxin (BuTX), which is present in the venoms of the three Brazilian scorpions Tityus serrulatus, Tityus bahiensis, and Tityus stigmurus, has been investigated. This toxin was shown to reversibly block the Shaker B potassium channels (K(d) approximately 660 nM) and inhibit the proliferation of T-cells and the interleukin-2 production of antigen-stimulated T-helper cells. BuTX is a 40 amino acid basic protein stabilized by the four disulfide bridges: Cys2-Cys5, Cys10-Cys31, Cys16-Cys36, and Cys20-Cys38. The latter three are conserved among all members of the short-chain scorpion toxin family, while the first is unique to BuTX. The three-dimensional structure of BuTX was determined using (1)H-NMR spectroscopy. NOESY, phase sensitive COSY (PH-COSY), and amide hydrogen exchange data were used to generate constraints for molecular modeling calculations. Distance geometry and simulated annealing calculations were performed to generate a family of 49 structures free of constraint violations. The secondary structure of BuTX consists of a short 2(1/2) turn alpha-helix (Glu15-Phe23) and a beta-sheet. The beta-sheet is composed of two well-defined antiparallel strands (Gly29-Met32 and Lys35-Cys38) connected by a type-I' beta-turn (Asn33-Asn34). Residues Cys5-Ala9 form a quasi-third strand of the beta-sheet. The N-terminal C2-C5 disulfide bridge unique to this toxin does not appear to confer stability to the protein.  相似文献   

11.
12.
The crystal structure of a highly acidic neurotoxin from the scorpion Buthus tamulus has been determined at 2.2A resolution. The amino acid sequence determination shows that the polypeptide chain has 64 amino acid residues. The pI measurement gave a value of 4.3 which is one of the lowest pI values reported so far for a scorpion toxin. As observed in other alpha-toxins, it contains four disulphide bridges, Cys12-Cys63, Cys16-Cys36, Cys22-Cys46, and Cys26-Cys48. The crystal structure reveals the presence of two crystallographically independent molecules in the asymmetric unit. The conformations of two molecules are identical with an r.m.s. value of 0.3A for their C(alpha) tracings. The overall fold of the toxin is very similar to other scorpion alpha-toxins. It is a betaalphabetabeta protein. The beta-sheet involves residues Glu2-Ile6 (strand beta1), Asp32-Trp39 (strand beta3) and Val45-Val55 (strand beta4). The single alpha-helix formed is by residues Asn19-Asp28 (alpha2). The structure shows a trans peptide bond between residues 9 and 10 in the five-membered reverse turn Asp8-Cys12. This suggests that this toxin belongs to classical alpha-toxin subfamily. The surface features of the present toxin are highly characteristic, the first (A-site) has residues, Phe18, Trp38 and Trp39 that protrude outwardly presumably to interact with its receptor. There is another novel face (N-site) of this neurotoxin that contains several negatively charged residues such as, Glu2, Asp3, Asp32, Glu49 and Asp50 which are clustered in a small region of the toxin structure. On yet another face (P-site) in a triangular arrangement, with respect to the above two faces there are several positively charged residues, Arg58, Lys62 and Arg64 that also protrude outwardly for a potentially potent interaction with other molecules. This toxin with three strong features appears to be one of the most toxic molecules reported so far. In this sense, it may be a new subclass of neurotoxins with the largest number of hot spots.  相似文献   

13.
From the venom of scorpion Buthus martensii Karsch,a short peptide (BmP01, 29 amino acid residues) was isolated and characterized as previously reported (Lebren, R. R., et al. (1997) Eur. J. Biochem. 245, 457-464). It was shown to reduce 33% outward K(+) channel (hippocampal neurons) currents at 10 microM. The solution structure of BmP01 was determined by 2D (1)H NMR spectroscopy. The NOEs, coupling constants, and H-D exchange obtained from NMR spectroscopy were used in structural calculations. The conformation of BmP01 is composed of a short alpha-helix (Cys 3-Thr 12) and a two-stranded antiparallel beta-sheet (Ala 15-Asp 20 and Lys 23-Pro 28). There are three disulfide bridges (Cys 3-Cys 19, Cys 6-Cys 24 and Cys 10-Cys 26) connecting the alpha-helix and beta-sheet. Asp 20 to Lys 23 form a type II turn linking the two strands. Structural and electrostatic potential comparison between BmP01 and its analogues are also presented.  相似文献   

14.
Charybdotoxin (ChTX), a potent inhibitor of the high conductance Ca2(+)-activated K+ channel (PK,Ca) is a highly basic peptide isolated from venom of the scorpion Leiurus quinquestriatus hebraeus, whose primary structure has been determined (Gimenez-Gallego, G., Navia, M. A., Reuben, J. P., Katz, G. M., Kaczorowski, G. J., and Garcia, M. L. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3329-3333). The synthesis of this peptide using continuous flow solid phase fluorenylmethyloxycarbonyl-pentafluorophenyl ester methodology has now been achieved. The 1-37-amino acid hexasulfhydryl peptide oxidizes readily to give the tricyclic disulfide structure in good yield. This folded synthetic material is identical to native toxin based on three criteria: co-migration with ChTX on reversed phase high performance liquid chromatography (HPLC); competitive inhibition of 125I-labeled monoiodotyrosine charybdotoxin binding to bovine aortic sarcolemmal membrane vesicles with a Ki (10 pM) identical to that of native toxin; blockade of PK,Ca activity in excised outside-out patches from bovine aortic smooth muscle with the potency and inhibitory properties characteristic of ChTX (i.e. appearance of silent periods interdispersed with normal bursts of channel activity in single channel recordings). Selective enzymatic digestion of native or synthetic ChTX by simultaneous exposure to chymotrypsin and trypsin yields identical reversed phase HPLC profiles. Analysis of the sequence and amino acid composition of the resulting fragments defines a disulfide bond arrangement (Cys7-Cys28, Cys13-Cys33, Cys17-Cys35) which differs from that previously suggested. This configuration predicts a highly folded tertiary structure for ChTX which, together with observations from electrophysiological and binding experiments, suggests a possible mechanism by which ChTX interacts with PK,Ca to block channel function.  相似文献   

15.
16.
Determination of the nucleotide sequence of a cDNA for batroxobin, a thrombin-like enzyme from Bothrops atrox, moojeni venom, allowed elucidation of the complete amino acid sequence of batroxobin for the first time for a thrombin-like snake venom enzyme. The molecular weight of batroxobin is 25,503 (231 amino acids). The amino acid sequence of batroxobin exhibits significant homology with those of mammalian serine proteases (trypsin, pancreatic kallikrein, and thrombin), indicating that batroxobin is a member of the serine protease family. Based on this homology and enzymatic and chemical studies, the catalytic residues and disulfide bridges of batroxobin were deduced to be as follows: catalytic residues, His41, Asp86, and Ser178; and disulfide bridges, Cys7-Cys139, Cys26-Cys42, Cys74-Cys230, Cys118-Cys184, Cys150-Cys163, and Cys174-Cys199. The amino-terminal amino acid residue of batroxobin, valine, is preceded by 24 amino acids. This may indicate that the amino-terminal hydrophobic peptide (18 amino acids) is a prepeptide and that the hydrophilic peptide (6 amino acids), preceded by the putative prepeptide, is a propeptide.  相似文献   

17.
The complete primary structure of a galactose-specific lectin contained in the venom of the rattlesnake, Crotalus atrox, was determined. The lectin is composed of two covalently linked, identical subunits, each consisting of 135 amino acid residues. Under physiological conditions the lectin proved to be highly aggregated. The venom lectin contained 9 half-cystines, 8 of which formed four intrasubunit disulfide bridges (Cys3-Cys14, Cys31-Cys131, Cys38-Cys133, and Cys106-Cys123), while Cys86 was involved in an intersubunit disulfide bridge. Because of the high content of disulfide bridges, the intact lectin was extremely resistant to tryptic digestion. The determined amino acid sequence was found to be homologous with those of the so-called carbohydrate recognition domains of Ca2(+)-dependent-type lectins in animal. Among them, 8 amino acid residues (Cys31, Gly69, Trp92, Pro97, Cys106, Asp120, Cys123, and Cys131) were completely conserved. Leu40, Trp67, and Trp81 were also well conserved. The rattlesnake venom lectin showed high hemagglutinating activity. These results, together with the occurrence of similar lectins in crotalid venoms, suggest that these lectins have evolved in order to make the venom a more effective weapon to capture prey animals.  相似文献   

18.
cDNA cloning and expression of acutin   总被引:19,自引:0,他引:19  
Acutin, a thrombin-like enzyme was purified from Agkistrodon acutus venom in three steps by DEAE-Sepharose CL-6B, Superose 12 column on FPLC and Mono-Q column chromatographies. Its first 15 N-terminal amino acid residues sequence was then determined and the acutin cDNA was isolated from venom gland total RNA using RT-PCR. Determination of its nucleotide sequence allowed elucidation of the amino acid sequence of mature peptide for the first time. The mature acutin has 233 amino acids and its amino acid sequence exhibits significant homology with those of thrombin-like enzymes from crotaline snakes venoms. Based on the homology, the catalytic residues and disulfide bridges of acutin were deduced to be as follows: catalytic residues, His41, Asp84 and Ser179; and disulfide bridges, Cys7-Cys139, Cys26-Cys42, Cys74-Cys231, Cys118-Cys185, Cys150-Cys164, Cys175-Cys200. The recombinant acutin has been expressed in E. coli and purified by affinity column. The renatured recombinant acutin is reported for the first time to have the activity of clotting fibrinogen and arginine-esterase.  相似文献   

19.
Methods are reported for the unambiguous syntheses of all three possible disulfide regioisomers with the sequence of alpha-conotoxin SI, a tridecapeptide amide from marine cone snail venom that binds selectively to the muscle subtype of nicotinic acetylcholine receptors. The naturally occurring peptide has two 'interlocking' disulfide bridges connecting Cys2-Cys7 and Cys3-Cys13 (2/7&3/13), while in the two mispaired isomers the disulfide bridges connect Cys2-Cys13 and Cys3-Cys7 (2/13 & 3/7, 'nested') and Cys2-Cys3 and Cys7-Cys13 (2/3 & 7/13, 'discrete'), respectively. Alignment of disulfide bridges was controlled at the level of orthogonal protection schemes for the linear precursors, assembled by Fmoc solid-phase peptide synthesis on acidolyzable tris(alkoxy)benzylamide (PAL) supports. Side-chain protection of cysteine was provided by suitable pairwise combination of the S-9H-xanthen-9-yl (Xan) and S-acetamidomethyl (Acm) protecting groups. The first disulfide bridge was formed from the corresponding bis(thiol) precursor obtained by selective deprotection of S-Xan, and the second disulfide bridge was formed by orthogonal co-oxidation of S-Acm groups on the remaining two Cys residues. It was possible to achieve the desired alignments with either order of loop formation (smaller loop before larger, or vice versa). The highest overall yields were obtained when both disulfides were formed in solution, while experiments where either the first or both bridges were formed while the peptide was on the solid support revealed lower overall yields and poorer selectivities towards the desired isomers.  相似文献   

20.
Flavoridin and echistatin, isolated from the venom of Trimeresurus flavoviridis and Echis carinatus, respectively, belong to the disintegrin family of integrin beta 1 and beta 3 inhibitors of low molecular weight RGD-containing, cysteine-rich peptides. Since disulfide bonds are critical for expression of biological activity, we sought to determine their location in these two proteins. In flavoridin, direct evidence for the existence of linkage between Cys4-Cys19 and between Cys45 and Cys64 was obtained by analysis of proteolytic products, and indirect evidence suggests links between Cys6-Cys14 and Cys13-Cys36. In echistatin, links between Cys8-Cys37 and Cys20-Cys39 were identified by direct chemical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号