首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although CpG methylation clearly distributes genome-wide in vertebrate nuclear DNA, the state of methylation in the vertebrate mitochondrial genome has been unclear. Several recent reports using immunoprecipitation, mass spectrometry, and enzyme-linked immunosorbent assay methods concluded that human mitochondrial DNA (mtDNA) has much more than the 2 to 5% CpG methylation previously estimated. However, these methods do not provide information as to the sites or frequency of methylation at each CpG site. Here, we have used the more definitive bisulfite genomic sequencing method to examine CpG methylation in HCT116 human cells and primary human cells to independently answer these two questions. We found no evidence of CpG methylation at a biologically significant level in these regions of the human mitochondrial genome. Furthermore, unbiased next-generation sequencing of sodium bisulfite treated total DNA from HCT116 cells and analysis of genome-wide sodium bisulfite sequencing data sets from several other DNA sources confirmed this absence of CpG methylation in mtDNA. Based on our findings using regionally specific and genome-wide approaches with multiple human cell sources, we can definitively conclude that CpG methylation is absent in mtDNA. It is highly unlikely that CpG methylation plays any role in direct control of mitochondrial function.  相似文献   

2.
3.
From nucleotide sequences of mitochondrial and chloroplast genes the probable frequency of the CpG----TpG + CpA substitutions was determined. These substitutions may indicate the level of prior DNA methylation. It was found that the level of this methylation is significantly lower in mitochondrial DNA (mtDNA) and chloroplast DNA (chDNA) than in nuclear DNA (nDNA) of the same species. The species (taxon) specificity of mtDNA and chDNA methylation was revealed. A correlation was found between the level of CpG methylation in nDNA, and mtDNA and chDNA in different organisms. It is shown that cytosine residues in CpG were not subjected to significant methylation in the fungi and invertebrate mtDNA and also in the algae chDNA. In contrast, the vertebrate mtDNA bears the impress of CpG-supression, which is confirmed by direct data on methylation of these DNA. Here the first data on the possible enzymatic methylation of the plant mtDNA and chDNA were obtained. It was shown that the degree of CpG-suppression in the 5S rRNA nuclear genes of lower and higher plants is significantly higher in the chloroplast genes of 4,5S and 5S rRNA. From data on pea chDNA hydrolysis with MspI and HpaII it was established that in CCGG sequences this DNA is not methylated. The role of DNA methylation in increasing the mutation rate and in accelerating the evolutionary rates of vertebrate mtDNA is discussed.  相似文献   

4.
Recent studies have documented that cytosine C(5) methylation of CpG sequences enhances mitomycin C (1) adduction. The reports differ on the extent and uniformity of 1 modification at the nucleotide level. We have determined the bonding profiles for mitomycin monoalkylation in two DNA restriction fragments where the CpG sequences were methylated. Three mitomycin substrates were used and two different enzymatic assays employed to monitor the extent of drug modification at the individual base sites. Drug DNA modification was accomplished with I and 10-decarbamoylmitomycin C (2) under reductive (Na2S2O4) condilions and with N-methyl-7-methoxyaziridinomitosene (3) under nonreductive conditions. The UvrABC incision assay permitted us to quantitate the sites of drug adduction, and the lambda-exonuclease stop assay provided a qualitative estimation of drug-DNA modification consistent with the UvrABC data. We learned that C(5) cytosine methylation (m5C) enhanced the extent of overall DNA modification. Using the UvrABC endonuclease assay, we found that modification by 1 increased 2.0 and 7.4 times for the two DNA restriction fragments. Analysis of the modification sites at the nucleotide sequence level revealed that guanine (G) was the only base modified and that the overall increased level of DNA adduction was due to enhanced modification of select m5CpG* (G* = mitomycin (mitosene) adduction sites) loci compared with CpG* sites: the largest differences reached two orders of magnitude. Significantly, not all CpG* sites underwent increased drug adduction upon C(5) cytosine methylation. The effect of C(5) cytosine methylation on the drug adduction profiles was less pronounced for G* sites located within dinucleotide sequences other than CpG*. We observed that DNA methylation often led to slightly diminished adduction levels at these sites. The different m5CpG* adduction patterns provided distinctive sequence-selective bonding profiles for 1-3. We have attributed the large differences in guanine reactivity to DNA structural factors created, in part, by C(5) cytosine methylation. The significance of these findings in cancer chemotherapy is briefly discussed.  相似文献   

5.
Methylation on CpG residues is one of the most important epigenetic modifications of nuclear DNA, regulating gene expression. Methylation of mitochondrial DNA (mtDNA) has been studied using whole genome bisulfite sequencing (WGBS), but recent evidence has uncovered technical issues which introduce a potential bias during methylation quantification. Here, we validate the technical concerns of WGBS, and develop and assess the accuracy of a new protocol for mtDNA nucleotide variant-specific methylation using single-molecule Oxford Nanopore Sequencing (ONS). Our approach circumvents confounders by enriching for full-length molecules over nuclear DNA. Variant calling analysis against showed that 99.5% of homoplasmic mtDNA variants can be reliably identified providing there is adequate sequencing depth. We show that some of the mtDNA methylation signal detected by ONS is due to sequence-specific false positives introduced by the technique. The residual signal was observed across several human primary and cancer cell lines and multiple human tissues, but was always below the error threshold modelled using negative controls. We conclude that there is no evidence for CpG methylation in human mtDNA, thus resolving previous controversies. Additionally, we developed a reliable protocol to study epigenetic modifications of mtDNA at single-molecule and single-base resolution, with potential applications beyond CpG methylation.  相似文献   

6.
7.
8.
The effects of DNA methylation on gene expression and chromatin structure suggest the existence of a mechanism in the nucleus capable of distinguishing methylated and non-methylated sequences. We report the finding of a nuclear protein in several vertebrate tissues and cell lines that binds preferentially to methylated DNA in vitro. Its lack of sequence-specific requirements makes it potentially capable of binding to any methylated sequence in mammalian nuclei. An in vivo counterpart of these results is that methylated CpGs are inaccessible to nucleases within nuclei. In contrast, non-methylated CpG sites, located mainly at CpG islands, and restriction sites not containing this dinucleotide, are relatively accessible. The possibility that DNA methylation acts through binding to specific proteins that could alter chromatin structure is discussed.  相似文献   

9.
10.
An altered pattern of epigenetic modifications, such as DNA methylation and histone modification, is critical to many common human diseases, including cancer. Recently, mitochondrial DNA (mtDNA) was reported to be associated with tumorigenesis through epigenetic regulation of methylation patterns. One of the promising approaches to study DNA methylation and CpG islands (CGIs) is sequencing and analysis of clones derived from the physical library generated by methyl-CpG-binding domain proteins and restriction enzyme MseI. In this study, we observed that the most redundant sequences of 349 clones in a human CGI library were all generated from the human mitochondrial genome. Further analysis indicated that there was a 5,845-bp DNA transfer from mtDNA to chromosome 1, and all the clones should be the products of a 510-hp MseI fragment, which contained a putative CGI of 270 bp. The 510-bp fragment was annotated as part of cytochrome c oxidase subunit Ⅱ (COXⅡ), and phylogenetic analysis of homologous sequences containing COXII showed three DNA transfer events from mtDNA to nuclear genome, one of which underwent secondary transfer events between different chromosomes. These results may further our understanding of how the mtDNA regulates DNA methylation in the nucleus.  相似文献   

11.
Measuring the degree of methylation of the B1 element in mouse may represent the global DNA methylation status because about 30,000 copies of the B1 element are randomly dispersed in the total mouse genome. Six CpG dinucleotides are located within each 163 bp size of B1 element, and each CpG dinucleotide was partially methylated. We quantitated the DNA methylation of the B1 repetitive elements by performing PCR for the methylation specific PCR (MSP) and also by the pyrosequencing. Each CpG dinucleotide was methylated at an average of 9% in the mouse genome by the pyrosequencing and MSP. Especially, we checked whether CpG methylation of the B1 element could respond to a treatment of the DNA methylation inhibitor, 5-azacytidine (5-AzaC). Consequently, the calibration graph resulting from measuring the relative CpG methylation percentage of the B1 element is linearly decreased with the increasing amount of 5-AzaC (up to 50 ng/ml concentration) in the NIH3T3 cells with a standard deviation of only 1.73% between three independent assays. Our methods can be applied to the routine analysis of the global DNA methylation changes in mouse in vivo and in vitro in pharmaceuticals and basic epigenetic research with efforts being less labor-intensive.  相似文献   

12.
Eukaryotic DNA methylation   总被引:24,自引:0,他引:24  
  相似文献   

13.
Park CW  Park J  Kren BT  Steer CJ 《Genomics》2006,88(2):204-213
The Sleeping Beauty (SB) transposon (Tn) system is a nonviral gene delivery tool that has widespread application for transfer of therapeutic genes into the mammalian genome. To determine its utility as a gene delivery system, it was important to assess the epigenetic modifications associated with SB insertion into the genome and potential inactivation of the transgene. This study investigated the DNA methylation pattern of an SB Tn as well as the flanking genomic region at insertion sites in the mouse genome. The ubiquitous ROSA26 promoter and an initial part of the eGFP coding sequence in the SB Tn exhibited high levels of CpG methylation in transgenic mouse lines, irrespective of the chromosomal loci of the insertion sites. In contrast, no detectable CpG methylation in the endogenous mouse ROSA26 counterpart was observed in the same animals. Furthermore, significant hypomethylation was detected in neighboring chromosomal sequences of two unique SB Tn insertions compared to wild-type patterns. Taken together, these results suggest that SB Tn insertions into the mouse genome can be discriminated by DNA methylation machinery from an identical endogenous DNA sequence and can profoundly alter the DNA methylation status of the transgene cargo as well as flanking host genomic regions.  相似文献   

14.
Two pairs of restriction enzyme isoschizomers were used to study in vivo methylation of E. coli and extrachromosomal DNA. By use of the restriction enzymes MboI (which cleaves only the unmethylated GATC sequence) and its isoschizomer Sau3A (indifferent to methylated adenine at this sequence), we found that all the GATC sites in E. coli and in extrachromosomal DNAs are symmetrically methylated on both strands. The calculated number of GATC sites in E. coli DNA can account for all its m6Ade residues. Foreign DNA, like mouse mtDNA, which is not methylated at GATC sites became fully methylated at these sequences when introduced by transfection into E. coli cells. This experiment provides the first evidence for the operation of a de novo methylation mechanism for E. coli methylases not involved in restriction modification. When the two restriction enzyme isoschizomers, EcoRII and ApyI, were used to analyze the methylation pattern of CCTAGG sequences in E. coli C and phi X174 DNA, it was found that all these sites are methylated. The number of CCTAGG sites in E. coli C DNA does not account for all m5Cyt residues.  相似文献   

15.
16.
Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read) Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i) amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii) methylation levels of individual cells in one tissue are very similar, and iii) methylation patterns follow a relaxed site-specific distribution. Furthermore, iv) we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene regulation. Further, we illustrate genotype–epigenotype interactions by showing novel examples of allele-specific methylation.  相似文献   

17.
18.
19.
DNA甲基化作为直接作用于DNA序列的一种表观遗传修饰,能够在不改变DNA分子一级结构的情况下影响基因表达,在生命活动中扮演着重要的角色.在哺乳动物中,DNA甲基化主要发生在C_pG二核苷酸的胞嘧啶上,并且在基因组中呈现不均匀分布.准确预测DNA甲基化位点有助于阐明DNA甲基化对基因表达的调控作用,并为肿瘤的早期诊断及治疗提供新的依据.本文应用离散增量结合二次判别分析的方法,对人类的C_pG二核苷酸甲基化状态进行了识别.5折交叉检验的整体准确率超过了80%,受试者操作特性曲线面积也达到了0.86.与现有方法相比,预测成功率显著提高.这说明离散增量结合二次判别分析方法适用于甲基化位点的预测;基因组序列中甲基化位点具有序列依赖性.  相似文献   

20.
Li VS  Reed M  Zheng Y  Kohn H  Tang M 《Biochemistry》2000,39(10):2612-2618
We have established that UvrABC nuclease is equally efficient in cutting mitomycin C (MC)-DNA monoadducts formed at different sequences and that the degree of UvrABC cutting represents the extent of drug-DNA bonding. Using this method we determined the effect of C5 cytosine methylation on the DNA monoalkylation by MC and the related analogues N-methyl-7-methoxyaziridinomitosene (MS-NMA) and 10-decarbamoylmitomycin C (DC-MC). We have found that C5 cytosine methylation at CpG sites greatly enhances MC and MS-NMA DNA adduct formation at those sites while reducing adduct formation at non-CpG sequences. In contrast, although DC-MC DNA bonding at CpG sites is greatly enhanced by CpG methylation, its bonding at non-CpG sequences is not appreciably affected. These cumulative results suggest that C5 cytosine methylation at CpG sites enhances sequence selectivity of drug-DNA bonding. We propose that the methylation pattern and status (hypo- or hypermethylation) of genomic DNA may determine the cells' susceptibility to MC and its analogues, and these effects may, in turn, play a crucial role in the antitumor activities of the drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号