首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli O157:H7 cells survived for up to 77, >226, and 231 days in manure-amended autoclaved soil held at 5, 15, and 21 degrees C, respectively. Pathogen populations declined more rapidly in manure-amended unautoclaved soil under the same conditions, likely due to antagonistic interactions with indigenous soil microorganisms. E. coli O157:H7 cells were inactivated more rapidly in both autoclaved and unautoclaved soils amended with manure at a ratio of 1 part manure to 10 parts soil at 15 and 21 degrees C than in soil samples containing dilute amounts of manure. The manure-to-soil ratio, soil temperature, and indigenous microorganisms of the soil appear to be contributory factors to the pathogen's survival in manure-amended soil.  相似文献   

2.
Application of animal manures to soil as crop fertilizers is an important means for recycling the nitrogen and phosphorus which the manures contain. Animal manures also contain bacteria, including many types of pathogens. Manure pathogen levels depend on the source animal, the animal's state of health, and how the manure was stored or treated before use. Rainfall may result in pathogen spread into soil by runoff from stored or unincorporated manure or by leaching through the soil profile. Steady rainfall consisting of 16.5 mm h(-1) was applied to 100-mm disturbed soil cores that were treated with manure and inoculated with Escherichia coli O157:H7 strain B6914. The level of B6914 in leachate was near the inoculum level each hour for 8 h, as was the level of B6914 at several soil depths after 24 h, indicating that there was a high rate of growth. Bacterial movement through three different types of soil was then compared by using disturbed (tilled) and intact (no-till) soil cores and less intense rainfall consisting of 25.4 mm on 4 consecutive days and then four more times over a 17-day period. Total B6914 levels exceeded the inoculum levels for all treatments except intact clay loam cores. B6914 levels in daily leachate samples decreased sharply with time, although the levels were more constant when intact sandy loam cores were used. The presence of manure often increased total B6914 leachate and soil levels in intact cores but had the opposite effect on disturbed soil cores. Ammonia and nitrate levels correlated with B6914 and total coliform levels in leachate. We concluded that tillage practice, soil type, and method of pathogen delivery affect but do not prevent vertical E. coli O157:H7 and coliform transport in soil and that soluble nitrogen may enhance transport.  相似文献   

3.
Persistence of Escherichia coli O157:H7 and its mutants in soils   总被引:1,自引:0,他引:1  
Ma J  Ibekwe AM  Yi X  Wang H  Yamazaki A  Crowley DE  Yang CH 《PloS one》2011,6(8):e23191
The persistence of Shiga toxin-producing E. coli O157:H7 in the environment poses a serious threat to public health. However, the role of Shiga toxins and other virulence factors in the survival of E. coli O157:H7 is poorly defined. The aim of this study was to determine if the virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 play any significant role in the growth of this pathogen in rich media and in soils. Isogenic deletion mutants that were missing one of four virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 were constructed, and their growth in rich media and survival in soils with distinct texture and chemistry were characterized. The survival data were successfully analyzed using Double Weibull model, and the modeling parameters of the mutant strains were not significantly different from those of the wild type. The calculated Td (time needed to reach the detection limit, 100 CFU/g soil) for loamy sand, sandy loam, and silty clay was 32, 80, and 110 days, respectively. It was also found that Td was positively correlated with soil structure (e.g. clay content), and soil chemistry (e.g. total nitrogen, total carbon, and water extractable organic carbon). The results of this study showed that the possession of Shiga toxins and intimin in E. coli O157:H7 might not play any important role in its survival in soils. The double deletion mutant of E. coli O157:H7 (stx 1 stx 2 ) may be a good substitute to use for the investigation of transport, fate, and survival of E. coli O157:H7 in the environment where the use of pathogenic strains are prohibited by law since the mutants showed the same characteristics in both culture media and environmental samples.  相似文献   

4.
AIMS: The survival characteristics of Escherichia Coli O157:H7 were investigated in bovine slurry from cattle fed two different diets: (i) silage and (ii) silage + concentrates. METHODS AND RESULTS: Slurry samples collected from freshly-agitated tanks were inoculated at a level of log10 6.0 cfu g(-1) and stored in the laboratory at 10 degrees C. Over a 12 week storage period, a 3.5 and 5.5 log reduction was observed in slurry from cattle fed a silage and silage plus concentrate diet, respectively. CONCLUSIONS: The persistence of E. coli O157:H7 in slurry over a 3 month storage period indicates its potential for transmitting the organism back into the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The discussion concludes however, that despite pathogen survival in slurry, it may not represent a major source of transmission in the farm environment.  相似文献   

5.
Aims: A growing number of foodborne illnesses has been associated with the consumption of fresh produce. In this study, the probability of lettuce contamination with Escherichia coli O157:H7 from manure-amended soil and the effect of intervention strategies was determined. Methods and Results: Pathogen prevalence and densities were modelled probabilistically through the primary production chain of lettuce (manure, manure-amended soil and lettuce). The model estimated an average of 0·34 contaminated heads per hectare. A minimum manure storage time of 30 days and a minimum fertilization-to-planting interval of 60 days was most successful in reducing the risk. Some specific organic farming practices concerning manure and soil management were found to be risk reducing. Conclusions: Certain specific organic farming practices reduced the likelihood of contamination. This cannot be generalized to organic production as a whole. However, the conclusion is relevant for areas like the Netherlands where there is high use of manure in both organic and conventional vegetable production. Significance and Impact of the Study: Recent vegetable-associated disease outbreaks stress the importance of a safe vegetable production chain. The present study contributed to this by providing a first estimate of the likelihood of lettuce contamination with E. coli O157:H7 and the effectiveness of risk mitigation strategies.  相似文献   

6.
7.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

8.
The survival characteristics of a non-toxigenic, antibiotic-resistant strain of Escherichia coli O157:H7 in bovine faeces were investigated. Faecal samples were inoculated with 10(8-9) cfu g-1 of the organism and (i) stored in closed plastic containers at 10 degrees C, (ii) stored in closed plastic containers placed outside or (iii) decanted onto the surface of grazing land. Recovery and enumeration on Sorbitol MacConkey Agar (SMAC) and Tryptic Soya Agar (TSA) revealed that the E. coli O157:H7 numbers in both enclosed samples (i and ii) had decreased by 4.5-5.5 log10 cfu g-1 within 99 d. Numbers in samples decanted onto grassland (iii) decreased by 4.0-5.0 log10 cfu g-1 within 50 d but the organism was still detectable in the surrounding soil for up to 99 d. Persistence of E. coli O157:H7 in bovine faeces and contaminated pastures may therefore be an important factor in the initial infection and re-infection of cattle.  相似文献   

9.
The effect of pH reduction with acetic (pH 5.2), citric (pH 4.0), lactic (pH 4.7), malic (pH 4.0), mandelic (pH 5.0), or tartaric (pH 4.1) acid on growth and survival of Escherichia coli O157:H7 in tryptic soy broth with 0.6% yeast extract held at 25, 10, or 4 degrees C for 56 days was determined. Triplicate flasks were prepared for each acid treatment at each temperature. At 25 degrees C, populations increased 2 to 4 log10 CFU/ml in all treatments except that with mandelic acid, whereas no growth occurred at 10 or 4 degrees C in any treatments except the control. However, at all sampling times, higher (P < 0.05) populations were recovered from treatments held at 4 degrees C than from those held at 10 degrees C. At 10 degrees C, E. coli O157:H7 was inactivated at higher rates in citric, malic, and mandelic acid treatments than in the other treatments. At the pH values tested, the presence of the organic acids enhanced survival of the pathogen at 4 degrees C compared with the unacidified control. E. coli O157:H7 has the ability to survive in acidic conditions (pH, > or = 4.0) for up to 56 days, but survival is affected by type of acidulant and temperature.  相似文献   

10.
11.
G J Leyer  L L Wang    E A Johnson 《Applied microbiology》1995,61(10):3752-3755
Escherichia coli O157:H7 was adapted to acid by culturing for one to two doublings at pH 5.0. Acid-adapted cells had an increased resistance to lactic acid, survived better than nonadapted cells during a sausage fermentation, and showed enhanced survival in shredded dry salami (pH 5.0) and apple cider (pH 3.4). Acid adaptation is important for the survival of E. coli O157:H7 in acidic foods and should be considered a prerequisite for inocula used in food challenge studies.  相似文献   

12.
Koodie L  Dhople AM 《Microbios》2001,104(409):167-175
Outbreaks of diarrhoea and haemolytic uraemic syndrome have been associated with the consumption of apple cider and apple juice. The organism implicated in these outbreaks has been Escherichia coli O157:H7, indicating the resistance of the serotype to acidic pH. On comparing the growth of this serotype with a control strain of E. coli, it was found that strain O157:H7 grew well in trypticase soy broth at pH levels ranging from 2.0 to 9.0, while control strains failed to grow at pH levels below 4.0 and above 9.0. The growth of both strains were inhibited by adding 0.05% of either benzoic acid or sorbic acid. Similarly, O157:H7 grew well in both natural (unpasteurized) as well as in pasteurized apple juice and the growth was inhibited by adding 0.1% of either benzoic acid or sorbic acid. Control strains of E. coli failed to grow in either types of apple juice. The possible sources of contamination of natural apple juice with O157:H7 serotype are discussed.  相似文献   

13.
Direct PCR detection of Escherichia coli O157:H7   总被引:2,自引:0,他引:2  
AIMS: This paper reports a simple, rapid approach for the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC). METHODS AND RESULTS: Direct PCR (DPCR) obviates the need for the recovery of cells from the sample or DNA extraction prior to PCR. Primers specific for Stx-encoding genes stx1 and stx2 were used in DPCR for the detection of E. coli O157:H7 added to environmental water samples and milk. CONCLUSIONS: PCR reactions containing one cell yielded a DPCR product. SIGNIFICANCE AND IMPACT OF THE STUDY: This should provide an improved method to assess contamination of environmental and other samples by STEC and other pathogens.  相似文献   

14.
There are 29 E. coli genome sequences available, mostly related to studies of species diversity or mode of pathogenicity, including two genomes of the well-known O157:H7 clone. However, there have been no genome studies of closely related clones aimed at exposing the details of evolutionary change. Here we sequenced the genome of an O55:H7 strain, closely related to the major pathogenic O157:H7 clone, with published genome sequences, and undertook comparative genomic and proteomic analysis. We were able to allocate most differences between the genomes to individual mutations, recombination events, or lateral gene transfer events, in specific lineages. Major differences include a type II secretion system present only in the O55:H7 chromosome, fewer type III secretion system effectors in O55:H7, and 19 phage genomes or phagelike elements in O55:H7 compared to 23 in O157:H7, with only three common to both. Many other changes were found in both O55:H7 and O157:H7 lineages, but in general there has been more change in the O157:H7 lineages. For example, we found 50% more synonymous mutational substitutions in O157:H7 compared to O55:H7. The two strains also diverged at the proteomic level. Mutational synonymous SNPs were used to estimate a divergence time of 400 years using a new clock rate, in contrast to 14,000 to 70,000 years using the traditional clock rates. The same approaches were applied to three closely related extraintestinal pathogenic E. coli genomes, and similar levels of mutation and recombination were found. This study revealed for the first time the full range of events involved in the evolution of the O157:H7 clone from its O55:H7 ancestor, and suggested that O157:H7 arose quite recently. Our findings also suggest that E. coli has a much lower frequency of recombination relative to mutation than was observed in a comparable study of a Vibrio cholerae lineage.  相似文献   

15.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

16.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

17.
The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased.  相似文献   

18.
Fate of Escherichia coli O157:H7 in Manure-Amended Soil   总被引:5,自引:0,他引:5       下载免费PDF全文
Escherichia coli O157:H7 cells survived for up to 77, >226, and 231 days in manure-amended autoclaved soil held at 5, 15, and 21°C, respectively. Pathogen populations declined more rapidly in manure-amended unautoclaved soil under the same conditions, likely due to antagonistic interactions with indigenous soil microorganisms. E. coli O157:H7 cells were inactivated more rapidly in both autoclaved and unautoclaved soils amended with manure at a ratio of 1 part manure to 10 parts soil at 15 and 21°C than in soil samples containing dilute amounts of manure. The manure-to-soil ratio, soil temperature, and indigenous microorganisms of the soil appear to be contributory factors to the pathogen's survival in manure-amended soil.  相似文献   

19.

Background:

Escherichia coli O157:H7 is one cause of acute bacterial gastroenteritis, which can be devastating in outbreak situations. We studied the risk of cardiovascular disease following such an outbreak in Walkerton, Ontario, in May 2000.

Methods:

In this community-based cohort study, we linked data from the Walkerton Health Study (2002–2008) to Ontario’s large healthcare databases. We included 4 groups of adults: 3 groups of Walkerton participants (153 with severe gastroenteritis, 414 with mild gastroenteritis, 331 with no gastroenteritis) and a group of 11 263 residents from the surrounding communities that were unaffected by the outbreak. The primary outcome was a composite of death or first major cardiovascular event (admission to hospital for acute myocardial infarction, stroke or congestive heart failure, or evidence of associated procedures). The secondary outcome was first major cardiovascular event censored for death. Adults were followed for an average of 7.4 years.

Results:

During the study period, 1174 adults (9.7%) died or experienced a major cardiovascular event. Compared with residents of the surrounding communities, the risk of death or cardiovascular event was not elevated among Walkerton participants with severe or mild gastroenteritis (hazard ratio [HR] for severe gastroenteritis 0.74, 95% confidence interval [CI] 0.38–1.43, mild gastroenteritis HR 0.64, 95% CI 0.42–0.98). Compared with Walkerton participants who had no gastroenteritis, risk of death or cardiovascular event was not elevated among participants with severe or mild gastroenteritis.

Interpretation:

There was no increase in the risk of cardiovascular disease in the decade following acute infection during a major E. coli O157:H7 outbreak.Escherichia coli O157:H7 is one cause of acute bacterial gastroenteritis, causing 63 000 infections each year and 12 major outbreaks since 2006 in the United States alone.1,2 This strain was most recently implicated in the outbreak involving beef from XL Foods (September 2012), with 17 confirmed cases across Canada.3 A similar enterohemorrhagic strain E. coli O104:H4 was responsible for an outbreak in Germany in May 2011, causing 3792 cases of gastroenteritis and 43 deaths.4,5Most patients fully recover from acute gastroenteritis caused by E. coli. However, such an illness may predispose patients to long-term disease. Shiga toxin is produced by E. coli O157:H7; this toxin damages the microvasculature of the kidneys leading to hypertension613 and directly damages the systemic vasculature.1416 Infected people may progress from a state of acute inflammation of the vasculature to subclinical chronic inflammation, which could promote atherosclerosis.1720In Walkerton, Ontario, in May 2000, heavy rains transported bovine fecal matter into the town’s well, contaminating the inadequately chlorinated municipal water supply with E. coli O157:H7.21 Over 2300 people developed acute gastroenteritis, and 7 people died.22 The unique circumstances of this outbreak provided a rare opportunity to study the natural history following exposure to this pathogen in a single cohort.23 Other outbreaks have been geographically dispersed, making it difficult to track cases.24,25In Walkerton, affected individuals were followed annually in a clinic to assess their long-term outcomes (Walkerton Health Study, 2002–2008). We previously reported that adults who experienced acute gastroenteritis during the outbreak had a higher than expected incidence of hypertension, chronic kidney disease and self-reported cardiovascular disease in follow-up.23 However, 46% of participants were lost to follow-up by the end of the study, and there were limitations associated with the assessment of cardiovascular disease by participant recall. Thus, we conducted an expanded and extended follow-up study, linking the Walkerton study data to Ontario’s health care databases. Our objective was to more accurately determine the 10-year risk of major cardiovascular events after exposure to E. coli O157:H7.  相似文献   

20.
Escherichia coli O157:H7 causes hemorrhagic colitis and hemolytic-uremic syndrome in humans, and its major reservoir is healthy cattle. An F-like 92-kb plasmid, pO157, is found in most E. coli O157:H7 clinical isolates, and pO157 shares sequence similarities with plasmids present in other enterohemorrhagic E. coli serotypes. We compared wild-type (WT) E. coli O157:H7 and an isogenic DeltapO157 mutant for (i) growth rates and antibiotic susceptibilities, (ii) survival in environments with various acidity, salt, or heat conditions, (iii) protein expression, and (iv) survival and persistence in cattle following oral challenge. Growth, metabolic reactions, and antibiotic resistance of the DeltapO157 mutant were indistinguishable from those of its complement and the WT. However, in cell competition assays, the WT was more abundant than the DeltapO157 mutant. The DeltapO157 mutant was more resistant to acidic synthetic bovine gastric fluid and bile than the WT. In vivo, the DeltapO157 mutant survived passage through the bovine gastrointestinal tract better than the WT but, interestingly, did not colonize the bovine rectoanal junction mucosa as well as the WT. Many proteins were differentially expressed between the DeltapO157 mutant and the WT. Proteins from whole-cell lysates and membrane fractions of cell lysates were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis. Ten differentially expressed approximately 50-kDa proteins were identified by quadrupole-time of flight mass spectrometry and sequence matching with the peptide fragment database. Most of these proteins, including tryptophanase and glutamate decarboxylase isozymes, were related to survival under salvage conditions, and expression was increased by the deletion of pO157. This suggested that the genes on pO157 regulate some chromosomal genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号