首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uninfected neurons of the substantia nigra (SN) degenerate in human immunodeficiency virus (HIV)‐positive patients through an unknown etiology. The HIV envelope glycoprotein 120 (gp120) causes apoptotic neuronal cell death in the rodent striatum, but its primary neurotoxic mechanism is still under investigation. Previous studies have shown that gp120 causes neurotoxicity in the rat striatum by reducing brain‐derived neurotrophic factor (BDNF). Because glial cell line‐derived neurotrophic factor (GDNF) and BDNF are neurotrophic factors crucial for the survival of dopaminergic neurons of the SN, we investigated whether gp120 reduces GDNF and BDNF levels concomitantly to induce apoptosis. Rats received a microinjection of gp120 or vehicle into the striatum and were sacrificed at various time intervals. GDNF but not BDNF immunoreactivity was decreased in the SN by 4 days in gp120‐treated rats. In these animals, a significant increase in the number of caspase‐3‐ positive neurons, both tyrosine hydroxylase (TH)‐positive and ‐negative, was observed. Analysis of TH immunoreactivity revealed fewer TH‐positive neurons and fibers in a medial and lateral portion of cell group A9 of the SN, an area that projects to the striatum, suggesting that gp120 induces retrograde degeneration of nigrostriatal neurons. We propose that dysfunction of the nigrostriatal dopaminergic system associated with HIV may be caused by a reduction of neurotrophic factor expression by gp120. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

2.
Support of ageing neurons by endogenous neurotrophic factors such as glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) may determine whether the neurons resist or succumb to neurodegeneration. GDNF has been tested in clinical trials for the treatment of Parkinson disease (PD), a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. BDNF modulates nigrostriatal functions and rescues DA neurons in PD animal models. The physiological roles of GDNF and BDNF signaling in the adult nigrostriatal DA system are unknown. We generated mice with regionally selective ablations of the genes encoding the receptors for GDNF (Ret) and BDNF (TrkB). We find that Ret, but not TrkB, ablation causes progressive and adult-onset loss of DA neurons specifically in the substantia nigra pars compacta, degeneration of DA nerve terminals in striatum, and pronounced glial activation. These findings establish Ret as a critical regulator of long-term maintenance of the nigrostriatal DA system and suggest conditional Ret mutants as useful tools for gaining insights into the molecular mechanisms involved in the development of PD.  相似文献   

3.
Although epidermal growth factor (EGF) receptor (ErbB1) is implicated in Parkinson's disease and schizophrenia, the neurotrophic action of ErbB1 ligands on nigral dopaminergic neurons remains controversial. Here, we ascertained colocalization of ErbB1 and tyrosine hydroxylase (TH) immunoreactivity and then characterized the neurotrophic effects of ErbB1 ligands on this cell population. In mesencephalic culture, EGF and glial-derived neurotrophic factor (GDNF) similarly promoted survival and neurite elongation of dopaminergic neurons and dopamine uptake. The EGF-promoted dopamine uptake was not inhibited by GDNF-neutralizing antibody or TrkB-Fc, whereas EGF-neutralizing antibody fully blocked the neurotrophic activity of the conditioned medium that was prepared from EGF-stimulated mesencephalic cultures. The neurotrophic action of EGF was abolished by ErbB1 inhibitors and genetic disruption of erbB1 in culture. In vivo administration of ErbB1 inhibitors to rat neonates diminished TH and dopamine transporter (DAT) levels in the striatum and globus pallidus but not in the frontal cortex. In parallel, there was a reduction in the density of dopaminergic varicosities exhibiting intense TH immunoreactivity. In agreement, postnatal erbB1-deficient mice exhibited similar decreases in TH levels. Although neurotrophic supports to dopaminergic neurons are redundant, these results confirm that ErbB1 ligands contribute to the phenotypic and functional development of nigral dopaminergic neurons.  相似文献   

4.
Parkinson's disease (PD) is characterized by the progressive degeneration of the nigrostriatal dopaminergic system. Brain delivery of glial cell line-derived neurotrophic factor (GDNF) has been shown to protect and restore the dopaminergic pathway in various animal models of PD. However, GDNF overexpression in the dopaminergic pathway leads to a time-dependent down-regulation of tyrosine hydroxylase (TH), a key enzyme in dopamine synthesis. In order to elucidate GDNF-mediated biochemical effects on dopaminergic neurons, we overexpressed GDNF in the intact rat striatum using a lentiviral vector-mediated gene transfer technique. Long-term GDNF overexpression led to increased GTP cyclohydrolase I (GTPCH I) activity and tetrahydrobiopterin (BH4) levels. Further, we observed a down-regulation of TH enzyme activity in morphologically intact striatal dopaminergic nerve terminals, as well as a significant decrease of dopamine levels in striatal tissue samples. These results indicate that long-term GDNF delivery is a major factor affecting dopamine biosynthesis via a direct or indirect modulation of TH and GTPCH I and further underscore the importance of assessing both GDNF dose and delivery duration prior to clinical application in order to circumvent potentially adverse pharmacological effects on the biosynthesis of dopamine.  相似文献   

5.
We have analyzed the regulation of brain-derived neurotrophic factor (BDNF) mRNA expression in the nigrostriatal system following neurotoxin ablation of striatal targets by means of kainate (KA) or quinolinic acid (QA) injections. Loss of nigral target cells in the striatum was accompanied by significant induction of BDNF mRNA levels in the ipsilateral substantia nigra (SN) at 12 and 24 h post lesion. Dual tyrosine hydroxylase (TH) and BDNF mRNA in situ hybridization (ISH) confirmed the dopaminergic nature of the BDNF mRNA expressing cells. Analysis of neuronal activity in terms of cFos mRNA expression demonstrated intense induction of this marker in the ipsilateral SN pars reticulata (SNPR), but not in SN pars compacta. Dual glutamic acid decarboxylase (GAD) and cFos mRNA ISH confirmed this view. Colchicine injections into the medial forebrain bundle to specifically disrupt neuronal trafficking between SN and striatum induced BDNF mRNA levels in the ipsilateral SNPC, thus demonstrating that nigral expression of BDNF mRNA is dependent of striatal target tissue. In addition, we found significant elevations of BDNF in the subthalamic nucleus following striatal excitotoxic lesion, which may bring novel roles of BDNF in the basal ganglia complex.  相似文献   

6.
The striatum integrates motor behavior using a well‐defined microcircuit whose individual components are independently affected in several neurological diseases. The glial cell line‐derived neurotrophic factor (GDNF), synthesized by striatal interneurons, and Sonic hedgehog (Shh), produced by the dopaminergic neurons of the substantia nigra (DA SNpc), are both involved in the nigrostriatal maintenance but the reciprocal neurotrophic relationships among these neurons are only partially understood. To define the postnatal neurotrophic connections among fast‐spiking GABAergic interneurons (FS), cholinergic interneurons (ACh), and DA SNpc, we used a genetically induced mouse model of postnatal DA SNpc neurodegeneration and separately eliminated Smoothened (Smo), the obligatory transducer of Shh signaling, in striatal interneurons. We show that FS postnatal survival relies on DA SNpc and is independent of Shh signaling. On the contrary, Shh signaling but not dopaminergic striatal innervation is required to maintain ACh in the postnatal striatum. ACh are required for DA SNpc survival in a GDNF‐independent manner. These data demonstrate the existence of three parallel but interdependent neurotrophic relationships between SN and striatal interneurons, partially defined by Shh and GDNF. The definition of these new neurotrophic interactions opens the search for new molecules involved in the striatal modulatory circuit maintenance with potential therapeutic value.  相似文献   

7.
Glial-cell-line-derived neurotrophic factor (GDNF) is a novel trophic factor with potent trophic effects on several neuron populations in the central and peripheral nervous system. In the present study, we have investigated and compared the potential of dopamine and metamphetamine with that of the two striatal neurotrophic factors, viz., GDNF and neurotrophin-(NT)-4/5, to regulate substance P and its preprotachykinin-A mRNA in organotypic striatal slices from postnatal (day 10) rats. Incubation for 2 weeks with 10 ng/ml GDNF significantly increased substance-P-like immunoreactivity determined by radioimmunoassay. Similarly, the corresponding preprotachykinin-A mRNA increased after 1 and 2 weeks of incubation, as analyzed by in situ hybridization. NT-4/5 exhibited similar effects.The dopamine-releasing agent metamphetamine stimulated substance-P-containing neurons in 1-week-old striatal slices, whereas dopamine stimulated substance-P-like immunoreactivity in 1- and 2-week old striatal cultures. The effects of dopamine and GDNF were not additive. We conclude that substance-P-containing medium-sized spiny neurons in the striatum are under both dopaminergic and growth factor control by GDNF and NT-4/5, which are both synthesized in the striatum. This adds a previously unknown role to those that have been established for GDNF in the nigrostriatal system. Received: 9 March 1996 / Accepted: 14 June 1996  相似文献   

8.
Non cell-autonomous processes are thought to play critical roles in the cellular maintenance of the healthy and diseased brain but mechanistic details remain unclear. We report that the interruption of a non cell-autonomous mode of sonic hedgehog (Shh) signaling originating from dopaminergic neurons causes progressive, adult-onset degeneration of dopaminergic, cholinergic, and fast spiking GABAergic neurons of the mesostriatal circuit, imbalance of cholinergic and dopaminergic neurotransmission, and motor deficits reminiscent of Parkinson's disease. Variable Shh signaling results in graded inhibition of muscarinic autoreceptor- and glial cell line-derived neurotrophic factor (GDNF)-expression in the striatum. Reciprocally, graded signals that emanate from striatal cholinergic neurons and engage the canonical GDNF receptor Ret inhibit Shh expression in dopaminergic neurons. Thus, we discovered a mechanism for neuronal subtype specific and reciprocal communication that is essential for neurochemical and structural homeostasis in the nigrostriatal circuit. These results provide integrative insights into non cell-autonomous processes likely at play in neurodegenerative conditions such as Parkinson's disease.  相似文献   

9.
The survival and functional maintenance of vertebrate neurons depends on the availability of specific neurotrophic factors. We studied the influence of neurotrophic support on responses of dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin known to damage the nigrostriatal dopaminergic pathway in humans and other mammals. Treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine caused decreases in levels of Ret, a tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF) in the striatum, under the condition in which tyrosine hydroxylase was moderately decreased and the GDNF family receptor alpha1, another receptor of GDNF that is the ligand-binding subunit, were unaffected. Down-regulation of Ret was also observed in dopamine-producing PC12 cells undergoing apoptosis induced by rotenone, another toxic substance for dopaminergic neurons, while other cellular components were not affected. Ret was also extremely vulnerable to other apoptotic inducing conditions. Taken together, these results indicate that Ret, an important signal molecule in dopaminergic neurons, may be down-regulated in the early stages of neuronal degeneration caused by various neurotoxic substances, and may lead to reduced neurotrophic influences.  相似文献   

10.
The loss of nigral dopaminergic (DA) neurons is the disease-defining pathological change responsible for progressive motor dysfunction in Parkinson’s disease. In this study, we sought to establish a culture method for adult rat tyrosine hydroxylase (TH)-immunoreactive DA neurons. In this context, we investigated the role of fibroblast growth factor 2 (FGF2), brain-derived neurotrophic factor (BDNF), transforming growth factor-β3 (TGF-β3), glial-derived neurotrophic factor (GDNF) and dibutyryl-cyclic AMP (dbcAMP) in these cultures. Culturing in the presence of FGF2, BDNF and GDNF enhanced the survival of DA neurons by 15-fold and promoted neurite growth. In contrast, dbcAMP promoted neurite growth in all neurons but did not enhance DA cell survival. This study demonstrates that long-term cultures of DA neurons can be established from the mature rat brain and that survival and regeneration of DA neurons can be manipulated by epigenetic factors such as growth factors and intracellular cAMP pathways.  相似文献   

11.
Neurotrophic factors play a key role in development, differentiation, synaptogenesis, and survival of neurons in the brain as well as in the process of their adaptation to external influences. The serotonergic (5-HT) system is another major factor in the development and neuroplasticity of the brain. In the present review, the results of our own research as well as data provided in the corresponding literature on the interaction of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) with the 5-HT-system of the brain are considered. Attention is given to comparison of BDNF and GDNF, the latter belonging to a different family of neurotrophic factors and being mainly considered as a dopaminergic system controller. Data cited in this review show that: (i) BDNF and GDNF interact with the 5-HT-system of the brain through feedback mechanisms engaged in autoregulation of the complex involving 5-HT-system and neurotrophic factors; (ii) GDNF, as well as BDNF, stimulates the growth of 5-HT neurons and affects the expression of key genes of the brain 5-HT-system–those coding tryptophan hydroxylase-2 and 5-HT1A and 5-HT2A receptors. In turn, 5-HT affects the expression of genes that control BDNF and GDNF in brain structures; (iii) the difference between BDNF and GDNF is manifested in different levels and relative distribution of expression of these factors in brain structures (BDNF expression is highest in hippocampus and cortex, GDNF expression in the striatum), in varying reaction of 5-HT2A receptors on BDNF and GDNF administration, and in different effects on certain types of behavior.  相似文献   

12.
Acute administration of repeated doses of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) dramatically reduces striatal dopamine (DA) content, tyrosine hydroxylase (TH), and DA transporter-immunoreactivity in mice. In this study, we show for the first time the spatiotemporal pattern of dopaminergic damage and related molecular events produced by MDMA administration in mice. Our results include the novel finding that MDMA produces a significant decrease in the number of TH-immunoreactive neurons in the substantia nigra (SN). This decrease appears 1 day after injection, remains stable for at least 30 days, and is accompanied by a dose-dependent long-lasting decrease in TH- and DA transporter-immunoreactivity in the striatum, which peaked 1 day after treatment and persisted for at least 30 days, however, some recovery was evident from day 3 onwards, evidencing sprouting of TH fibers. No change is observed in the NAc indicating that MDMA causes selective destruction of DA-containing neurons in the nigrostriatal pathway, sparing the mesolimbic pathway. The expression of Mac-1 increased 1 day after MDMA treatment and glial fibrillary acidic protein increased 3 days post-treatment in the striatum and SN but not in the NAc, in strict anatomical correlation with dopaminergic damage. These data provide the first evidence that MDMA causes persistent loss of dopaminergic cell bodies in the SN.  相似文献   

13.
Adult rat retinal ganglion cells (RGC) undergo degeneration after optic nerve transection. Studies have shown that exogenously applied neurotrophic factors such as brain-derived neurotrophic factor (BDNF) can attenuate axotomy-induced as well as developmental RGC death. Here, we examined whether glial cell line-derived neurotrophic factor (GDNF), a known neurotrophic factor for dopaminergic neurons and motor neurons, could provide neurotrophic support to RGC in adult rats. We determined whether RGC could retrogradely transport GDNF from their target tissue. After injection into the superior colliculus of adult rats, 125I-GDNF was retrogradely transported to contralateral eyes but not to ipsilateral eyes. The transport of 125I-GDNF could be blocked by coinjection of excess unlabeled GDNF, indicating that it was receptor mediated. We tested whether intravitreally applied GDNF could prevent axotomy-induced RGC degeneration. The RGC were prelabeled with Fluorogold (FG) and axotomized by intraorbital optic nerve transection. GDNF, BDNF (positive control), cytochrome c (negative control), or a GDNF/BDNF combination was injected intravitreally on days 0 and 7. On day 14, FG-labeled RGC were counted from whole-mount retinas. We found that, similar to BDNF, GDNF could significantly attenuate the degeneration of RGC in a dose-dependent fashion. Furthermore, the combination treatment of GDNF and BDNF showed better protection than either factor used individually. Our data indicate that GDNF is a neurotrophic factor for the adult rat RGC. GDNF, like BDNF, may be useful for the treatment of human RGC degenerative diseases.  相似文献   

14.
Neurturin (NTN) and glial cell line-derived neurotrophic factor (GDNF), two members of the GDNF family of growth factors, exert very similar biological activities in different systems, including the substantia nigra. Our goal in the present work was to compare their function and define whether nonoverlapping biological activities on midbrain dopaminergic neurons exist. We first found that NTN and GDNF are differentially regulated during postnatal development. NTN mRNA progressively decreased in the ventral mesencephalon and progressively increased in the striatum, coincident with a decrease in GDNF mRNA expression. This finding suggested distinct physiological roles for each factor in the nigrostriatal system. We therefore examined their function in ventral mesencephalon cultures and found that NTN promoted survival comparable with GDNF, but only GDNF induced sprouting and hypertrophy of developing dopaminergic neurons. We subsequently examined the ability of NTN to prevent the 6-hydroxydopamine-induced degeneration of adult dopaminergic neurons in vivo. Fibroblasts genetically engineered to deliver high levels of GDNF or NTN were grafted supranigrally. NTN was found to be as potent as GDNF at preventing the death of nigral dopaminergic neurons, but only GDNF induced tyrosine hydroxylase staining, sprouting, or hypertrophy of dopaminergic neurons. In conclusion, our results show selective survival-promoting effects of NTN over wider survival, neuritogenic, and hypertrophic effects of GDNF on dopaminergic neurons in vitro and in vivo. Such differences are likely to underlie unique roles for each factor in postnatal development and may ultimately be exploited in the treatment of Parkinson's disease.  相似文献   

15.
Delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) increases locomotor activity in rodent models of aging and Parkinson’s disease in conjunction with increased dopamine (DA) tissue content in substantia nigra (SN). Striatal GDNF infusion also increases expression of GDNF’s cognate receptor, GFRα1, and tyrosine hydroxylase (TH) ser31 phosphorylation in the SN of aged rats long after elevated GDNF is no longer detectable. In aging, expression of soluble GFRα1 in the SN decreases in association with decreased TH expression, TH ser31 phosphorylation, DA tissue content, and locomotor activity. Thus, we hypothesized that, in aged rats, replenishing soluble GFRα1 in SN could reverse these deficits and increase locomotor activity. We determined that the quantity of soluble GFRα1 in young adult rat SN is ~3.6 ng. To replenish age-related loss, which is ~30 %, we infused 1 ng soluble GFRα1 bilaterally into SN of aged male rats and observed increased locomotor activity compared to vehicle-infused rats up to 4 days following infusion, with maximal effects on day 3. Five days after infusion, however, neither locomotor activity nor nigrostriatal neurochemical measures were significantly different between groups. In a separate cohort of male rats, nigral, but not striatal, DA, TH, and TH ser31 phosphorylation were increased 3 days following unilateral infusion of 1 ng soluble GFRα1into SN. Therefore, in aged male rats, the transient increase in locomotor activity induced by replenishing age-related loss of soluble GFRα1is temporally matched with increased nigral dopaminergic function. Thus, expression of soluble GFRα1 in SN may be a key component in locomotor activity regulation through its influence over TH regulation and DA biosynthesis.  相似文献   

16.
Adult rat retinal ganglion cells (RGC) undergo degeneration after optic nerve transection. Studies have shown that exogenously applied neurotrophic factors such as brain‐derived neurotrophic factor (BDNF) can attenuate axotomy‐induced as well as developmental RGC death. Here, we examined whether glial cell line–derived neurotrophic factor (GDNF), a known neurotrophic factor for dopaminergic neurons and motor neurons, could provide neurotrophic support to RGC in adult rats. We determined whether RGC could retrogradely transport GDNF from their target tissue. After injection into the superior colliculus of adult rats, 125I‐GDNF was retrogradely transported to contralateral eyes but not to ipsilateral eyes. The transport of 125I‐GDNF could be blocked by coinjection of excess unlabeled GDNF, indicating that it was receptor mediated. We tested whether intravitreally applied GDNF could prevent axotomy‐induced RGC degeneration. The RGC were prelabeled with Fluorogold (FG) and axotomized by intraorbital optic nerve transection. GDNF, BDNF (positive control), cytochrome c (negative control), or a GDNF/BDNF combination was injected intravitreally on days 0 and 7. On day 14, FG‐labeled RGC were counted from whole‐mount retinas. We found that, similar to BDNF, GDNF could significantly attenuate the degeneration of RGC in a dose‐dependent fashion. Furthermore, the combination treatment of GDNF and BDNF showed better protection than either factor used individually. Our data indicate that GDNF is a neurotrophic factor for the adult rat RGC. GDNF, like BDNF, may be useful for the treatment of human RGC degenerative diseases. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 382–390, 1999  相似文献   

17.
Pathogenesis of parkinson’s disease   总被引:7,自引:0,他引:7  
Parkinson's disease (PD) is caused by the degeneration of dopaminergic neurons of substantia nigra projecting to striatum. The cause of idiopathic PD is obscure, and most cases are sporadic. It is widely accepted that there is a genetic component of the disease, and the earlier the age of onset, the greater the likelihood that genetic factors play a dominant role. Oxidative stress of the substantia nigra seems to contain the driving force for neurodegeneration, leading to a destructive "toxic cycle." The most prevalent therapy is levodopa administration, but it is not efficacious after several years of treatment. Several alternative therapies are currently being explored, such as neuroprotective approaches. Compounds with potentially neuroprotective efficacy such as selegiline, dopamine agonists, riluzole, creatine, and coenzyme Q10 are currently being tested. Trophic factors represent another class of neuroprotective compounds, but their intracerebral administration is difficult to achieve. In this respect, a potentially useful therapeutic approach is grafting cell vectors that release trophic molecules that stimulate regeneration in the damaged nigrostriatal system. Promising results have been obtained with fibroblasts engineered to secrete glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) or viral vectors expressing GDNF. We have tested the suitability of intrastriatal grafts of chromaffin cells obtained from the Zuckerkandl's organ, which exert beneficial effects in parkinsonian rats, and release trophic factors such as GDNF and transforming growth factor-beta1 (TGF-beta1).  相似文献   

18.
We investigated postnatal alterations of neurons, interneurons and glial cells in the mouse substantia nigra using immunohistochemistry. Tyrosine hydroxylase (TH), neuronal nuclei (NeuN), parvalbumin (PV), neuronal nitric oxide synthase (nNOS), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba 1), CNPase (2′,3′-cyclic nucleotide 3′-phosphodiesterase), brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF) immunoreactivity were measured in 1-, 2-, 4- and 8-week-old mice. In the present study, the maturation of NeuN-immunopositive neurons preceded the production of TH in the substantia nigra during postnatal development in mice. Furthermore, the maturation of nNOS-immunopositive interneurons preceded the maturation of PV-immunopositive interneurons in the substantia nigra during postnatal development. Among astrocytes, microglia and oligodendrocytes, in contrast, the development process of oligodendrocytes is delayed in the substantia nigra. Our double-labeled immunohistochemical study suggests that the neurotrophic factors such as BDNF and GDNF secreted by GFAP-positive astrocytes may play some role in maturation of neurons, interneurons and glial cells of the substantia nigra during postnatal development in mice. Thus, our findings provide valuable information on the development processes of the substantia nigra.  相似文献   

19.
Although glial cell-line derived neurotrophic factor (GDNF) acts as a potent survival factor for dopaminergic neurons, it is not known whether GDNF can directly alter dopamine synthesis. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for dopamine biosynthesis, and its activity is regulated by phosphorylation on three seryl residues: Ser-19, Ser-31, and Ser-40. Using a TH-expressing human neuroblastoma cell line and rat primary mesencephalic neuron cultures, the present study examined whether GDNF alters the phosphorylation of TH and whether these changes are accompanied by increased enzymatic activity. Exposure to GDNF did not alter the TH protein level in either neuroblastoma cells or in primary neurons. However, significant increases in the phosphorylation of Ser-31 and Ser-40 were detected within minutes of GDNF application in both cell types. Enhanced Ser-31 and Ser-40 phosphorylation was associated with increased TH activity but not dopamine synthesis in neuroblastoma cells, possibly because of the absence of l-aromatic amino acid decarboxylase activity in these cells. In contrast, increased phosphorylation of Ser-31 and Ser-40 was found to enhance dopamine synthesis in primary neurons. Pharmacological experiments show that Erk and protein kinase A phosphorylate Ser-31 and Ser-40, respectively, and that their inhibition blocked both TH phosphorylation and activity. Our results indicate that, in addition to its role as a survival factor for dopaminergic neurons, GDNF can directly increase dopamine synthesis.  相似文献   

20.
Neurotrophic factors support the development of motoneurons by several possible mechanisms. Neurotrophins may act as target-derived factors or as afferent factors derived from the central nervous system (CNS) or sensory ganglia. We tested whether brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), neurotrophin 4 (NT-4), and glial cell line-derived neurotrophic factor (GDNF) may be target-derived factors for neurons in the oculomotor (MIII) or trochlear (MIV) nucleus in chick embryos. Radio-iodinated BDNF, NT-3, NT-4, and GDNF accumulated in oculomotor neurons via retrograde axonal transport when the trophic factors were applied to the target. Systemic GDNF rescued oculomotor neurons from developmental cell death, while BDNF and NT-3 had no effect. BDNF enhanced neurite outgrowth from explants of MIII and MIV nuclei (identified by retrograde labeling in ovo with the fluorescent tracer DiI), while GDNF, NT-3, and NT-4 had no effect. The oculomotor neurons were immunoreactive for BDNF and the BDNF receptors p75(NTR) and trkB. To determine whether BDNF may be derived from its target or may act as an autocrine or paracrine factor, in situ hybridization and deprivation studies were performed. BDNF mRNA expression was detected in eye muscles, but not in CNS sources of afferent innervation to MIII, or the oculomotor complex itself. Injection of trkB fusion proteins in the eye muscle reduced BDNF immunoreactivity in the innervating motoneurons. These data indicate that BDNF trophic support for the oculomotor neurons was derived from their target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号