首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The aim of this work was to investigate why non-lactating dairy cows are less susceptible to the development of ketonaemia during food deprivation than are dairy cows in early lactation. 2. The first experiment (Expt. A) consisted of determining the effect of 6 days of food deprivation on the concentrations of ketone bodies, and of metabolites related to the regulation of ketogenesis, in jugular blood and liver of non-lactating cows. 3. During the food deprivation, blood ketone-body concentrations rose significantly, but to a value that was only 16% of that achieved in lactating cows deprived of food for 6 days [Baird, Heitzman & Hibbitt (1972) Biochem. J. 128, 1311--1318]. 4. In the liver, food deprivation caused: a rise in ketone-body concentrations; a fall in the concentration of glycogen and of various intermediates of the Embden-Meyerhof pathway and the tricarboxylic acid cycle; an increase in cytoplasmic reduction; a decrease in the [total NAD+]/[total NADH] ratio; a decrease in energy charge. These changes were all qualitatively similar to those previously observed in the livers of the food-deprived lactating cows. 5. There appeared therefore to be a discrepancy in the food-deprived non-lactating cows between the absence of marked ketonaemia and the occurrence of metabolic changes within the liver suggesting increased hepatic ketogenesis. This discrepancy was partially resolved in Expt. B by the observation in two catheterized non-lactating cows that, although there was a 2-fold increase in hepatic ketogenesis during 6 days of food deprivation, ketogenesis from the splanchnic bed as a whole (i.e. gut and liver combined) declined slightly owing to cessation of gut ketogenesis.  相似文献   

2.
Biochemical aspects of bovine ketosis   总被引:11,自引:10,他引:1       下载免费PDF全文
1. The concentrations of acetoacetate, β-hydroxybutyrate and metabolites related to gluconeogenesis were determined in biopsy samples of the livers of ketotic, normal lactating and normal non-lactating cows. Key enzymes of gluconeogenesis in the liver were also assayed. 2. Significant decreases were found in the ketotic liver in the concentrations of glucogenic amino acids (glutamate, glutamine, alanine) and of glucogenic oxo acids (α-oxoglutarate, pyruvate, oxaloacetate). 3. The β-hydroxybutyrate/acetoacetate concentration ratios were generally much higher than in rat liver. 4. The concentration of total fat was sevenfold higher in the ketotic liver, and that of glucose plus glycogen fourfold lower than in normal liver. 5. The blood of ketotic cows showed a marked rise in the concentration of free fatty acids. 6. The activities of pyruvate carboxylase, propionyl-CoA carboxylase, phosphopyruvate carboxylase and fructose 1,6-diphosphatase showed no clear-cut differences between normal and ketotic animals. 7. Glucose injection promptly relieved the ketotic condition with respect to both the clinical and biochemical signs. The fall in the concentrations of the ketone bodies in the blood was preceded by a fall in the concentrations of free fatty acids and glycerol. 8. The findings are taken to be consistent with the concept that an increased rate of gluconeogenesis, causing a decrease in the concentration of oxaloacetate, is a major causal factor in ketogenesis.  相似文献   

3.
1. The purpose of this study was to determine the nature of the metabolic changes associated with carbohydrate and fat metabolism that occurred in the blood and liver of lactating dairy cows during starvation for 6 days. 2. During starvation, the blood concentrations of the free fatty acids and ketone bodies increased, whereas that of citrate decreased. After an initial increase, the blood concentration of glucose subsequently declined as starvation progressed. Starvation caused a significant decrease in the plasma concentration of serine and a significant increase in that of leucine. 3. After 6 days of starvation the hepatic concentrations of oxaloacetate, citrate, phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate, glucose, glycogen, ATP and NAD+ had all decreased, as had the hepatic activities of phosphopyruvate carboxylase (EC 4.1.1.32) and pyruvate kinase (EC 2.7.1.40). 4. The above metabolic changes are similar to those previously found to occur in cows suffering from spontaneous ketosis (Baird et al., 1968; Baird & Heitzman, 1971). 5. Milk yield decreased progressively during starvation. 6. There were marked differences in the ability of individual animals to resist the onset of severe starvation ketosis.  相似文献   

4.
The effects of administration of synthetic thyrotropin-releasing hormone (TRH) on circulating growth hormone (GH), PROLACTIN (PRL) and triiodothyronine (T3) levels of lactating dairy cows, non-lactating dairy heifers, and beef cows were studied. Intravenous administration of 0.1, 1, and 5 microgram of TRH per kg of body weight (bw) elevated plasma GH and PRL levels of lactating cows within 5 min. The plasma GH and PRL levels increased in proportion to the dose of TRH and reached a peak 10 to 30 min after TRH injection. Intravenous administration of 1 microgram of TRH per kg of bw to 7 non-lactating heifers, 14 lactating dairy cows, and 5 non-lactating beef cows elevated plasma GH level to peak values after 15 min, the increase rates being 6.9, 5.6, and 3.8 times as high as those in the pretreatment levels. The mean maximum vale was also in that order. Plasma T3 levels of non lactating dairy heifers at pre- and post-injection of TRH were significantly higher than those of lactating cows. The peak values of plasma PRL were obtained between 5 to 30 min after TRH administration. The increase rates of lactating dairy cows, heifers, and beef cows were 19.2, 13.9, and 20.9 times as high as those in the pretreatment. In contrast to GH and T3, plasma PRL levels of both pre- and post-injection with TRH in lactating cows and heifers were significantly higher in May than in October, though the increase rates were similar. Plasma PRL levels of lactating dairy cows at pre- and post-injection with TRH were significantly higher than those of non-lactating heifers. Subcutaneous administration of TRH was also effective to increase plasma TH, rl, and T3 levels in lactating cows. No significant change of GH or PRL response to TRH was observed after a short-term pretreatment of thyroid hormones.  相似文献   

5.
1. Administration of propionate caused a twofold increase in the concentrations of lactate and pyruvate in the blood of vitamin B(12)-deficient rats, whereas there was a slight decrease in lactate and a 50% increase in pyruvate in normal rats. 2. Concentrations of total ketone bodies in the blood of normal rats were not significantly altered by propionate administration but the [3-hydroxybutyrate]/[acetoacetate] ratio decreased from 3.0 to 2.0. In the vitamin B(12)-deficient rats there was a 40% decrease in total ketone bodies and a change in the ratio from 3.4 to 1.2. 3. The changes in the concentration of ketone bodies in freeze-clamped liver preparations were similar in pattern to those observed in blood. 4. Propionate administration caused a decrease in the concentration of acetyl-CoA in the livers of both groups of animals, but the absolute decrease was greater in the vitamin B(12)-deficient group. The decrease in the concentration of CoA was similar in both groups. 5. As in blood, there were threefold increases in the concentrations of lactate and pyruvate in the livers of the vitamin B(12)-deficient rats after propionate administration, whereas there was no significant change in the concentrations of these metabolites in the normal rats. 6. There was a 50% inhibition of glucose synthesis in perfused livers from vitamin B(12)-deficient rats when lactate and propionate were substrates as compared with lactate alone. 7. It is concluded that the conversion of lactate into glucose is inhibited in vitamin B(12)-deficient rats after propionate administration, and that this effect is due to inhibition of the pyruvate carboxylase step resulting from a decrease in acetyl-CoA concentration and a postulated increase in methylmalonyl-CoA concentration.  相似文献   

6.
Excessive intake of fructose increases lipogenesis in the liver, leading to hepatic lipid accumulation and development of fatty liver disease. Metabolic alterations in the liver due to fructose intake have been reported in many studies, but the effect of fructose administration on hepatic gluconeogenesis is not fully understood. The aim of this study was to evaluate the acute effects of fructose administration on fasting-induced hepatic gluconeogenesis. C57BL/6J mice were administered fructose solution after 14 h of fasting and plasma insulin, glucose, free fatty acids, and ketone bodies were analysed. We also measured phosphorylated AKT and forkhead box O (FoxO) 1 protein levels and gene expression related to gluconeogenesis in the liver. Furthermore, we measured glucose production from pyruvate after fructose administration. Glucose-administered mice were used as controls. Fructose administration enhanced phosphorylation of AKT in the liver, without increase of blood insulin levels. Blood free fatty acids and ketone bodies concentrations were as high as those in the fasting group after fructose administration, suggesting that insulin-induced inhibition of lipolysis did not occur in mice administered with fructose. Fructose also enhanced phosphorylation of FoxO1 and suppressed gluconeogenic gene expression, glucose-6-phosphatase activity, and glucose production from pyruvate. The present study suggests that acute fructose administration suppresses fasting-induced hepatic gluconeogenesis in an insulin-independent manner.  相似文献   

7.
Ghrelin affects not only growth hormone secretion but also nutrient utilization and metabolic hormone secretion in humans and experimental animals. The effects of ghrelin on plasma metabolic hormone and metabolite levels in domestic herbivores remain unclear despite the fact that the physiological characteristics of nutrient digestion and absorption imply specific responses to ghrelin. Therefore, the effects of ghrelin on plasma glucose, pancreatic hormones and cortisol concentrations were investigated in Holstein dairy cattle in various physiological states. Ghrelin (0.3 nmol/kg) or placebo (2% bovine serum albumin in saline) was intravenously injected in pre-ruminant calves (pre-rumen function), adult non-lactating (functional rumen) and lactating cows (functional rumen and lactation), and plasma glucose, insulin, glucagon and cortisol concentrations were then determined. Ghrelin injection increased plasma glucose concentrations in adult cows, especially in lactating cows. No hyperglycemic response was observed in pre-ruminant calves. A transient rise of insulin and glucagon levels was distinctively found in lactating cows in response to the ghrelin administration. Ghrelin injection decreased the insulin level in pre-ruminant calves. Ghrelin increased cortisol secretion independently of the physiological state. The results of the present study suggest that the effects of ghrelin on plasma glucose and pancreatic hormone levels may reflect differences in the physiological states of dairy cattle.  相似文献   

8.
The metabolic state of pregnant mammals influences the offspring’s development and risk of metabolic disease in postnatal life. The metabolic state in a lactating dairy cow differs immensely from that in a non-lactating heifer around the time of conception, but consequences for their calves are poorly understood. The hypothesis of this study was that differences in metabolic state between non-lactating heifers and lactating cows during early pregnancy would affect insulin-dependent glucose metabolism and development in their neonatal calves. Using a mixed linear model, concentrations of glucose, IGF-I and non-esterified fatty acids (NEFAs) were compared between 13 non-lactating heifers and 16 high-yielding dairy cows in repeated blood samples obtained during the 1st month after successful insemination. Calves born from these dams were weighed and measured at birth, and subjected to intravenous glucose and insulin challenges between 7 and 14 days of age. Eight estimators of insulin-dependent glucose metabolism were determined: glucose and insulin peak concentration, area under the curve and elimination rate after glucose challenge, glucose reduction rate after insulin challenge, and quantitative insulin sensitivity check index. Effects of dam parity and calf sex on the metabolic and developmental traits were analysed in a two-way ANOVA. Compared with heifers, cows displayed lower glucose and IGF-I and higher NEFA concentrations during the 1st month after conception. However, these differences did not affect developmental traits and glucose homeostasis in their calves: birth weight, withers height, heart girth, and responses to glucose and insulin challenges in the calves were unaffected by their dam’s parity. In conclusion, differences in the metabolic state of heifers and cows during early gestation under field conditions could not be related to their offspring’s development and glucose homeostasis.  相似文献   

9.
1.
1. The aim of these studies was to determine metabolic changes in the liver accompanying the decreased in blood ketone body content that follows administration of a glucocorticoid to a ketotic cow. Accordingly, the hepatic metabolism of ketotic cows given a therapeutic dose of Voren (dexamethasone 21-isonicotinate) 48 h previously, was compared with that of untreated ketotic cows.  相似文献   

10.
Both starvation of and feeding a high linoleic acid content diet to rats during late pregnancy resulted in marked differences in the metabolism of the fed offspring immediately after birth when compared to control neonates (mother fed the normal high carbohydrate content laboratory diet during pregnancy). In particular differences in postnatal changes in blood glucose, non esterified fatty acids and ketone bodies and in hepatic triglyceride content were observed. Many of the differences appeared to be related to the variations in blood and hepatic metabolites present at birth in the various groups of animals. A similar situation also existed with respect to postnatal changes in the activity of hydroxymethylglutaryl-CoA synthase.  相似文献   

11.
The administration of glucose to 48 h-starved euthyroid or hyperthyroid rats led to decreased blood concentrations of fatty acids and ketone bodies in both groups, but fatty acid concentrations were higher and ketone-body concentrations lower in the latter group. Decreased ketonaemia was not due to increased ketone-body clearance. Flux through carnitine palmitoyltransferase 1 was increased, consistent with the effects of hyperthyroidism on enzyme activity demonstrated in vitro. Correlations between the concentrations of ketone bodies and long-chain acylcarnitine measured in freeze-clamped liver samples indicated that a lower proportion of the product of beta-oxidation was used for ketone-body synthesis. Citrate concentrations were unaffected by hyperthyroidism, but lipogenesis was increased. The results are discussed in relation to the factors controlling hepatic carbon flux and energy requirements after re-feeding.  相似文献   

12.
The effect of ketone body status on occurrence of first ovulation during early lactation was assessed in 84 multiparous dairy cows under field conditions. Animals were equally distributed across 8 farms and were controlled by the same herd fertility monitoring program. Cows were visited twice antepartum and 6 times postpartum at weekly intervals between 5:30 and 8:30 AM. On these occasions, body condition scores and milk yields were measured, blood and milk samples were taken, cows were gynecologically examined, and parameters of reproduction were determined. The onset of first ovulation was specified by milk progesterone determination and rectal palpation. Cows starting postpartum ovarian cyclicity within or after 30 d were classified as early and late responders (ER and LR, respectively). Resumption of the estrous cycle within 30 d postpartum is considered optimal under practical conditions, and classification based on this threshold value resulted in groups of equal size and equal distribution of ER + LR cows within farms. Ketone bodies measured were beta-hydroxybutyrate in serum and acetoacetate and acetone in serum and milk. Blood serum and milk ketone body concentrations during the first 6 wk of lactation were higher in LR than in ER, whereas plasma glucose and nonesterified fatty acid and milk fat, protein and urea concentrations did not differ between groups. Maximal concentrations of ketone bodies from parturition to first ovulation were better predictors of the onset of the estrous cycle than mean or minimal concentrations over the same period. Milk acetone and serum beta-hydroxybutyrate concentrations provided the most reliable information with regard to resumption of ovarian activity of all ketone bodies.  相似文献   

13.
1. Glycerol and dihydroxyacetone, both antiketogenic and readily metabolized, but differing in their effects on the redox state of the hepatic NAD couples, were given to starved rats and the contents of metabolites were measured in freezeclamped liver and in the blood. The object was to study the effects of changes in the redox state and of the availability of oxidizable substrates on the rate of ketone-body formation. 2. Intramuscular administration of dihydroxyacetone, glycerol or glucose to starved rats decreased the concentrations of acetoacetate and 3-hydroxybutyrate in the blood by 70-80% within 60min., whereas there was no major change in the free fatty acid concentration. 3. Dihydroxyacetone, but not glucose or glycerol, caused an immediate and sustained twofold increase in the blood lactate concentration. 4. Dihydroxyacetone and glycerol caused a rapid fall in the hepatic concentrations of ketone bodies, dihydroxyacetone being more effective. 5. This decrease was not accompanied by significant changes in the concentrations of acetyl-CoA, long-chain acyl-CoA or free CoA. 6. The hepatic glycerophosphate concentration rose about 40-fold on administration of glycerol, whereas with dihydroxyacetone the increase was only about 50%. The large increase in glycerophosphate concentration after administration of glycerol was completely prevented by pretreatment of the rats with tri-iodothyronine. Triiodothyronine-treated rats showed the same decrease in ketone-body concentrations after administration of glycerol as the untreated rats. 7. Glycerol and dihydroxyacetone caused an increase in the hepatic lactate concentration; the pyruvate concentration rose only after injection of dihydroxyacetone. 8. Both compounds increased liver glycogen. 9. Calculation of the [free NAD(+)]/[free NADH] ratios indicated that dihydroxyacetone increased the ratio in cytoplasm and mitochondria, whereas glycerol caused a prompt fall in both compartments, followed at 10min. by a slight rise in the mitochondrial compartment. 10. Dihydroxyacetone did not alter the hepatic content of ATP. 11. The findings suggest that the main reason for the antiketogenic effect of glycerol and dihydroxyacetone was a consequence of their ready metabolism and the provision of an increased supply of C(3) intermediates for conversion into oxaloacetate. Under the test conditions, neither the hepatic content of alpha-glycerophosphate nor the redox state of the NAD couples appeared to play a major role in the regulation of ketogenesis.  相似文献   

14.
1. Thyroidectomized rats injected daily with 0, 0.1, 2 or 25mug of l-thyroxine/100g body wt. were compared with intact controls. In plasma, the protein-bound iodine was decreased in the rats given the 0 or 0.1mug doses and increased in those given the 25mug dose. 2. Blood glucose decreased in those given 2mug and was augmented in those given 25mug, and ketone bodies were the same in all the groups. 3. Plasma insulin was lowest in the rats given the 0 or 0.1mug doses and was highest in those given the 2 or 25mug doses of thyroxine. 4. After 48h starvation, the decrease in blood glucose and increase in ketone bodies observed in all the groups was greatest in the group not supplemented with thyroxine. 5. Plasma insulin concentrations remained at the value for fed animals in the rats given the 25mug dose of thyroxine but decreased in the other groups. 6. In fed animals, concentrations of hepatic DNA P, citrate, total fatty acids and acetyl-CoA were similar in all the groups, and glycogen was low only in the rats given the 25mug dose of thyroxine. 7. After 48h starvation, liver DNA P, total fatty acids and acetyl-CoA increased in all the groups, except in the rats given the 25mug dose, where both total fatty acids and acetyl-CoA remained at the value for fed animals. Liver citrate did not change in the groups given the 0 or 25mug doses of thyroxine, but decreased in the other groups. 8. The results are discussed in relation to the regulation of intermediary metabolism in hypo- and hyper-thyroidism.  相似文献   

15.
1. The infusion of sodium dichloroacetate into rats with severe diabetic ketoacidosis over 4h caused a 2mM decrease in blood glucose, and small falls in blood lactate and pyruvate concentrations. Similar findings had been reported in normal rats (Blackshear et al., 1974). In contrast there was a marked decrease in blood ketone-body concentration in the diabetic ketoacidotic rats after dichloroacetate treatment. 2. The infusion of insulin alone rapidly decreased blood glucose and ketone bodies, but caused an increase in blood lactate and pyruvate. 3. Dichloroacetate did not affect the response to insulin of blood glucose and ketone bodies, but abolished the increase of lactate and pyruvate seen after insulin infusion. 4. Neither insulin nor dichloroacetate stimulated glucose disappearance after functional hepatectomy, but both agents decreased the accumulation in blood of lactate, pyruvate and alanine. 5. Dichloroacetate inhibited 3-hydroxybutyrate uptake by the extra-splachnic tissues; insulin reversed this effect. Ketone-body production must have decreased, as hepatic ketone-body content was unchanged by dicholoracetate yet blood concentrations decreased. 6. It was concluded that: (a) dichloroacetate had qualitatively similar effects on glucose metabolism in severely ketotic rats to those observed in non-diabetic starved animals; (b) insulin and dichloroacetate both separately and together, decreased the net release of lactate, pyruvate and alanine from the extra-splachnic tissues, possibly through a similar mechanism; (c) insulin reversed the inhibition of 3-hydroxybutyrate uptake caused by dichloroacetate; (d) dichloroacetate inhibited ketone-body production in severe ketoacidosis.  相似文献   

16.
After receiving an i.p. glucose load, 24 h fasted thyroidectomized rats showed a progressive increase in blood glucose and a slow decrease in blood ketone bodies. Both liver glycogen and plasma insulin levels showed no differences within 60 min of the glucose administration. It is suggested that the glucose intolerance in these animals is partly due to an insulin deficiency. Thyroidectomized rats treated daily with 25 microgram of L-thyroxine/100 g body weight for 40 days responded to the glucose test with a supranormal and more persistent elevation of blood glucose but with a faster and a greater fall in blood ketone bodies, as compared to controls. Sixty min after the glucose loading, liver glucogen levels were lower and plasma insulin were slightly higher than controls. It is suggested that a diminished extraction of glucose during transhepatic passage can be responsible for the impaired glucose tolerance observed in the hyperthyroid animals.  相似文献   

17.
Three lactating and three non-lactating black Bedouin goats were subjected to four days of water deprivation or to hemorrhage. Four days of water deprivation caused body wt losses of 32 and 23% and plasma volume losses of 30 and 34% in lactating and non-lactating goats respectively. Plasma osmolality increased 17 and 15% in lactating and non-lactating goats. Plasma arginine vasopressin concentration rose from about 5 pg/ml to a mean of 36 pg/ml. Plasma renin activity increased from about 0.7 ng/ml/hr to a mean of 3.45 ng/ml/hr in lactating and to 3.15 ng/ml/hr in non-lactating goats. At 4.5 hr post-rehydration plasma osmolality and plasma vasopressin concentration were back to normal in non-lactating, but still elevated in lactating goats. Plasma renin activity increased after rehydration. Rapid blood volume loss of 21-28% increased plasma vasopressin concentration to 16-35 pg/ml in non-lactating and to 70 or greater than 500 pg/ml in lactating goats. It is concluded that black Bedouin goats are well adapted to endure severe dehydration and rapid rehydration, but that they (especially lactating animals) react strongly to rapid volume depletion.  相似文献   

18.
The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose output increased, ketone body and acetate release increased while CO(2) release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands.  相似文献   

19.
Six non-pregnant cows were allocated into 3 groups. Group 1 comprised a pair of lactating cows, whereas groups 2 and 3 each comprised a pair of non-lactating cows. The cows in groups 1 and 2 were dosed intraruminally by stomach tube with zinc oxide at 120 mg Zn per kg of bodyweight at weekly intervals for a period of 33 days. Each cow received a total of 4 doses of zinc oxide. Group 3 served as non-treated control group. Blood samples were collected from all 6 cows daily. Serum was analysed for concentration of calcium. Within 12–24 h of each zinc oxide administration the serum calcium of the lactating cows dropped dramatically indicating the existence of an antagonistic effect between Zn and Ca. The first Zn induced hypocalcaemic episode in the lactating cows was followed by a rise in serum calcium to a level above the pre-dosing level and above the mean value of the control group. The depth of the hypocalcaemic response decreased with the number of zinc oxide dosings. This effect was explained as a response from the stimulation of the calcium homeostatic mechanisms. In the Zn dosed non-lactating cows responses were similar but less clear. The perspective of these findings is discussed in relation to resistance towards parturient hypocalcaemia.  相似文献   

20.
1. Total α-amino N and the amounts of 24 ninhydrin-positive substances were determined in several samples of plasma and lymph from the cow's udder. The arteriovenous differences of these substances across the mammary glands were measured in several experiments performed on lactating cows and in one experiment on a `dry' cow. Udder lymph obtained from live lactating cows by a lymph fistula and taken after killing lactating cows was analysed. 2. The concentrations of the individual free amino acids in udder lymph obtained from the live cow were similar to those found in cow's plasma. The concentrations of many amino acids in udder lymph taken immediately after death were two- to four-fold higher than those of the corresponding amino acids in udder lymph obtained from the live cow. 3. Most amino acids of the blood showed a considerable decrease in concentration by passage across the lactating mammary gland. Ornithine, a non-casein amino acid, showed arteriovenous differences of up to 60% of the arterial plasma concentration. No substantial amino acid uptake by the udder could be demonstrated in the experiment on the non-lactating cow. 4. The arteriovenous differences obtained for arginine, glutamine, isoleucine, leucine, lysine, valine, threonine and histidine were probably large enough to provide all the respective amino acid residues in milk protein. 5. The uptake of aspartic acid, asparagine, glutamic acid, serine and proline by the lactating cow's udder was not sufficient to account for all these respective amino acid residues found in milk protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号