首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物凋落物影响土壤有机质分解的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
植物凋落物是土壤动物和土壤微生物的主要生命物质和能量来源,其类型、组成以及物理化学等性质直接决定了土壤有机质的品质。对植物凋落物的类型、品质、物理性质、层效应和激发效应以及根际碳淀积与土壤有机质分解的关系进行了总结,可为研究植物凋落物对土壤有机质的影响提供理论参考,指出要在全球变暖背景下进一步加强凋落物分解过程中土壤微生物和酶活性变化的研究。  相似文献   

2.
Litter decomposition: a Russian matriochka doll   总被引:1,自引:0,他引:1  
Litter is decomposed in a sequential process. In a concerted action animals and microorganisms break down complex organic matter to mineral products. Higher animals fragment and partially solubilize plant material. Subsequently, microorganisms (protozoa, fungi and bacteria) further degrade the organic matter to end products that cannot be metabolized further under the prevailing environmental conditions. During the process of decomposition some parts of the organic substrate and the excess energy are used to form new biomass. Some free organic intermediates may interact chemically to form relatively recalcitrant organic matter, such as humic substances. The degree of mineralization depends strongly on the type of organic matter in the litter and the physical and chemical conditions of the environment.  相似文献   

3.
This research was focused on the selection, growth and identification of SRB from soils that were subjected to long-term activity of brine, and an evaluation of mineral phases formed during the biodegradation of organic compounds and sulphate reduction. Isolated communities of anaerobic microorganisms were incubated on Postgate C medium with lactate and/or ethanol as the sole carbon source and were adapted for growth at 4% NaCl. Active reduction of sulphates with simultaneous biodegradation of organic compounds was observed in all cultures. The largest reduction of sulphates was noted in cultures with lactate as the sole carbon source; it reached 1438 mg/L, which corresponds to a 43% reduction of sulphates introduced to the medium. SRB activity in the biodegradation of organic compounds varied between 20 and 80% and depended on the level of salinity of the environment in which the SRB communities were isolated, and on the electron donor applied. The presence of biotransformation products in the post-culture deposits in the form of elemental sulphur reflects the activity of the communities. Additionally, the influence of selected communities on the salinity index was analyzed. Active SRB communities decreased the salinity of the environment by as much as 50%. Sulphate-reducing bacteria are an important group of anaerobic microorganisms, especially considering their participation in such geological processes as mineral precipitation and mineralization of organic matter in extreme environmental conditions, including high salinity.  相似文献   

4.
Marine microorganisms play a fundamental role in the global carbon cycle by mediating the sequestration of organic matter in ocean waters and sediments. A better understanding of how biological factors, such as microbial community composition, influence the lability and fate of organic matter is needed. Here, we explored the extent to which organic matter remineralization is influenced by species-specific metabolic capabilities. We carried out aerobic time-series incubations of Guaymas Basin sediments to quantify the dynamics of carbon utilization by two different heterotrophic marine isolates (Vibrio splendidus 1A01; Pseudoalteromonas sp. 3D05). Continuous measurement of respiratory CO2 production and its carbon isotopic compositions (13C and 14C) shows species-specific differences in the rate, quantity and type of organic matter remineralized. Each species was incubated with hydrothermally-influenced versus unimpacted sediments, resulting in a ~2-fold difference in respiratory CO2 yield across the experiments. Genomic analysis indicated that the observed carbon utilization patterns may be attributed in part to the number of gene copies encoding for extracellular hydrolytic enzymes. Our results demonstrate that the lability and remineralization of organic matter in marine environments is not only a function of chemical composition and/or environmental conditions, but also a function of the microorganisms that are present and active.  相似文献   

5.
The extremely cold and arid Antarctic dry valleys are one of the most environmentally harsh terrestrial ecosystems supporting organisms in which the biogeochemical transformations of carbon are exclusively driven by microorganisms. The natural abundance of 13C and 15N in source organic materials and soils have been examined to obtain evidence for the provenance of the soil organic matter and the C loss as CO2 during extended incubation (approximately 1200 days at 10°C under moist conditions) has been used to determine the potential decay of soil organic C. The organic matter in soils remote from sources of liquid water or where lacustrine productivity was low had isotope signatures characteristic of endolithic (lichen) sources, whereas at more sheltered and productive sites, the organic matter in the soils that was a mixture mainly lacustrine detritus and moss-derived organic matter. Soil organic C declined by up to 42% during extended incubation under laboratory conditions (equivalent to 50–73 years in the field on a thermal time basis), indicating relatively fast turnover, consistent with previous studies indicating mean residence times for soil organic C in dry valley soils in the range 52–123 years and also with recent inputs of relatively labile source materials.  相似文献   

6.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

7.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

8.
The source of combined nitrogen in endolithic microbial communities was studied in samples from desert localities in North and South America, the Middle East, South Africa, and Antarctica. Nitrogen fixation (acetylene reduction) seems to occur only exceptionally. Evidence suggests that, in general, the nitrogen source for endolithic microorganisms in deserts is abiotically fixed nitrogen produced by atmospheric electric discharges (lightning or aurorae), conveyed to the rock by atmospheric precipitation. Nitrogen is apparently not a limiting factor in these low-productivity communities. An incomplete nitrogen cycle seems to be present which includes the following pathways: supply of nitrates and ammonia from the atmosphere; decomposition of organic matter to ammonia; reassimilation of ammonia; ammonia volatilization; loss of organic matter through weathering (only in certain Antarctic rocks); biological nitrogen fixation (exceptional).  相似文献   

9.
Utilization of dissolved organic matter (DOM) is thought to be the purview of heterotrophic microorganisms, but photoautotrophs can take up dissolved organic nitrogen (DON) and dissolved organic carbon (DOC). This study investigated DOC and DON uptake in a laminated cyanobacterial mat community from hypersaline Salt Pond (San Salvador, Bahamas). The total community uptake of (3)H-labeled substrates was measured in the light and in the dark and under conditions of high and low salinity. Salinity was the primary control of DOM uptake, with increased uptake occurring under low-salinity, 'freshened' conditions. DOC uptake was also enhanced in the light as compared with the dark and in samples incubated with the photosystem II inhibitor 3(3,4-dichlorophenyl)-1, 1-dimethylurea, suggesting a positive association between photosynthetic activity and DOC uptake. Microautoradiography revealed that some DOM uptake was attributed to cyanobacteria. Cyanobacteria DOM uptake was negatively correlated with that of smaller filamentous microorganisms, and DOM uptake by individual coccoid cells was negatively correlated with uptake by colonial coccoids. These patterns of activity suggest that Salt Pond microorganisms are engaged in resource partitioning, and DOM utilization may provide a metabolic boost to both heterotrophs and photoautrophs during periods of lowered salinity.  相似文献   

10.
SUMMARY. 1. The effect of removal of organic manor >1000 apparent molecular weight (AMW) upon biofilm processes was determined in three contrasting streams in West Germany and three contrasting rivers in the U.K. This process removed 66–85% of the dissolved organic matter supply.
2. Elevations in extra cellular enzyme activity (β-glucosidase, phosphatase and esterase), metabolic heat-output, bacterial density and poly-beta-hydroxy alkanoate (PHA) content (a prokaryote storage product) were noted throughout the study in response to the removal of organic matter. This suggests that there are inhibitory substances present in the dissolved organic matter pool >1000 AMW. Evidence is presented to suggest that phenolics play a role in this inhibition.
3. Decreases in metabolic heat output, β-glucosidase activity and PHA content were noted at four sites in response to the removal of >1000 AMW material.
4. The divergent responses of the six river/stream biofilms are indicative of radically differing metabolic/catabolic processes, on a spatial and/or temporal basis, to a major organic supply perturbation.  相似文献   

11.
The objectives of this paper are broadly to examine arctic soils and specifically to examine soil properties at ITEX sites. The Arctic is dominated by cold, wet, shallow soils often characterized by surficial organic horizons. Seven of 11 soil orders in Soil Taxonomy are present in the circumarctic and alpine zones of the ITEX Project. Soil organic matter is highly correlated to soil carbon (sink or source of atmospheric CO2), soil moisture (surficial energy balance), and soil nitrogen (plant limiting nutrient). Because of these vital roles, soil organic matter is a keystone that will influence the future response of arctic ecosystems to climate change.  相似文献   

12.
土壤微生物量氮含量、矿化特性及其供氮作用   总被引:33,自引:3,他引:33  
周建斌  陈竹君  李生秀 《生态学报》2001,21(10):1718-1725
论述了土壤中微生物体氮的含量及其影响因素,土壤微生物量氮的矿化特性及其与土壤矿化氮间的关系,土壤微生物量氮含量与土壤供氮指标间的关系等。提出研究不同生态系统中土壤微生物量氮的含量及其变化规律,不同耕作栽培措施对土壤微生物量氮含量的影响。土壤微生物量在土壤氮素保持和释放中的作用,土壤微生物量氮的转化率与其供氮量间的关系;土壤微生物量氮与作物氮素吸收间的关系等,是土壤微生物量氮方面应重点研究的问题。  相似文献   

13.
Dissimilatory Fe(III) and Mn(IV) reduction.   总被引:57,自引:1,他引:56       下载免费PDF全文
The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.  相似文献   

14.
The microbial community in the area of oil seep in Mid-Baikal (Cape Gorevoi Utes) was studied. The number of microorganisms that oxidize normal hydrocarbons, petroleum, and easily accessible organic matter in the water mass of the lake, bottom sediments, and bitumen structures was studied in 2005?C2009. The high heterogeneity of the distribution of microorganisms associated with the deparaffination of oil in the areas of oil seeps was noted. The maximum concentrations of hydrocarbon-oxidizing microorganisms in the samples of bottom water above bitumen structures (up to 2200 ± 175 CFU/mL) and in bitumen structures themselves (up to 170 000 ± 13 000 CFU/g) were determined. A model experiment showed that in the conditions of low temperatures (4°C) the degradation of the fraction of oil n-alkanes by the natural microbial community reaches 90% over a period of 60 days.  相似文献   

15.
In tropical forest ecosystems, a paradoxical relationship is commonly observed between massive biomass production and low soil fertility (low pH). The loss and deficiency of soil phosphorus (P) and bases generally constrain biomass production; however, high productivity on nutrient-deficient soils of Bornean tropical forests is hypothesized to be maintained by plant and microorganism adaptation to an acidic soil environment. Proton budgets in the plant–soil system indicated that plants and microorganisms promote acidification to acquire bases, even in highly acidic tropical soils. The nitric and organic acids they produce contribute to the mobilization of basic cations and their uptake by plants. In response to soil P deficiency and the recalcitrance of lignin-rich organic matter, specific trees and fungi can release organic acids and enzymes for nutrient acquisition. Organic acids exuded by roots and rhizosphere microorganisms can promote the solubilization of P bonded to aluminum and iron oxides and its uptake by plants from P-poor soils. Lignin degradation, a rate-limiting step in organic matter decomposition, is specifically enhanced in acidic organic layers by lignin peroxidase, produced by white-rot fungi, which may solubilize recalcitrant lignin and release soluble aromatic substances into the soil solution. This dissolved organic matter functions in the transport of nitrogen, P, and basic cations in acidic soils without increasing leaching loss. In Bornean tropical forests, soil acidification is promoted by plants and microorganisms as a nutrient acquisition strategy, while plant roots and fungi can develop rhizosphere and enzymatic processes that promote tolerance of low pH.  相似文献   

16.
Although algal growth in the iron-deficient Southern Ocean surface waters is generally low, there is considerable evidence that winter sea ice contains high amounts of iron and organic matter leading to ice-edge blooms during austral spring. We used field observations and ship-based microcosm experiments to study the effect of the seeding by sea ice microorganisms, and the fertilization by organic matter and iron on the planktonic community at the onset of spring/summer in the Weddell Sea. Pack ice was a major source of autotrophs resulting in a ninefold to 27-fold increase in the sea ice-fertilized seawater microcosm compared to the ice-free seawater microcosm. However, heterotrophs were released in lower numbers (only a 2- to 6-fold increase). Pack ice was also an important source of dissolved organic matter for the planktonic community. Small algae (<10 μm) and bacteria released from melting sea ice were able to thrive in seawater. Field observations show that the supply of iron from melting sea ice had occurred well before our arrival onsite, and the supply of iron to the microcosms was therefore low. We finally ran a “sequential melting” experiment to monitor the release of ice constituents in seawater. Brine drainage occurred first and was associated with the release of dissolved elements (salts, dissolved organic carbon and dissolved iron). Particulate organic carbon and particulate iron were released with low-salinity waters at a later stage.  相似文献   

17.
Growth of the parent and acid-tolerant mutant strains of Clostridiurn thermoaceticum was examined on a variety of substrates and mixtures of substrates. Nondiauxic growth was noted for both strains on combinations of carbohydrates, organic acids, or a carbohydrate and an organic acid. The mutant strain was able to grow on DL-lactate as sole energy source. The parent strain would not grow on lactate as sole energy source but consumed lactate when presented with a second fermentable substrate. Neither strain would grow on formate as sole energy source, but both consumed formate when presented with a second fermentable substrate.  相似文献   

18.
叶片中非结构性碳水化合物(NSC)不仅是植物维持代谢活动的重要物质基础, 也随凋落物归还土壤并为土壤微生物提供碳源, 对凋落物分解和土壤有机质形成具有重要意义。该研究比较了同质园中11个亚热带代表性树种新鲜叶与凋落叶NSC (可溶性糖、淀粉)含量。结果表明, 所有树种新鲜叶NSC含量均显著高于凋落叶, 新鲜叶中NSC含量为68.7-126.3 mg∙g-1, 而凋落叶中NSC含量为31.4-79.5 mg∙g-1。同时, 可溶性糖含量在新鲜叶和凋落叶中的变化幅度均远大于淀粉: 可溶性糖在新鲜叶中的平均含量是凋落叶的3.3倍; 而淀粉在新鲜叶中的平均含量仅为凋落叶的1.2倍。另外, 对不同功能类群的比较发现, 常绿阔叶树种与落叶阔叶树种NSC含量差异并不显著, 而针叶树种NSC含量明显低于阔叶树种。具体表现为: 在新鲜叶中, 常绿阔叶、落叶阔叶树种NSC含量平均为99.7和96.8 mg∙g-1, 而常绿针叶树种平均为75.4 mg∙g-1; 在凋落叶中, 常绿阔叶、落叶阔叶树种NSC含量平均为47.2和50.7 mg∙g-1, 而常绿针叶树种平均为33.3 mg∙g-1。这些结果表明, NSC作为林木碳代谢组分, 在叶片衰老前可能向新鲜叶转移, 反映了林木叶片碳存储策略。然而, 不管是新鲜叶还是凋落叶, 杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)等针叶树种叶片NSC含量显著低于阔叶树种, 这可能降低这些针叶树种凋落叶初始基质质量。  相似文献   

19.
贵州山区土壤中微生物担是能源物质碳流动的源与汇   总被引:7,自引:0,他引:7  
在传统的农业生态系统的研究中 ,主要精力放在营养物 (如N)上 ,认为它们是限制生产力的因素 ;而往往忽略了土壤中碳的重要性 ,认为收获不受C限制的影响。然而 ,碳循环中的有机碳的分解作用部分控制着出现在地表下和显露在地表上的农业过程[4]。土壤中所储存的有机质 ,其数量既反映土壤从植物残留物的输入所获得的有机质与微生物群落的能量和营养需求之间的平衡 ,又反映植物对营养物的需求与有机质分解作用之间的平衡。因此 ,土壤中碳的平衡能反映出有机质中能量物质的储存[5]。大部分由光合作用形成的碳 ,是通过地表下的生态系统来流动的[…  相似文献   

20.
The aim of this study was to examine whether the characterisation of organic matter on the basis of an oxygen uptake rate (OUR) could be applied to organic waste from an anaerobic waste treatment process. Three anaerobic digestion experiments were carried out in a bioreactor. Volatile fatty acids (VFA) and dissolved organic carbon (DOC) were monitored. OUR-experiments were carried out with diluted samples from the process. The graphs of the OUR-experiments showed a clear lag-phase, which was due to the slow adaptation of aerobic microorganisms. Model simulations of the OUR versus time curve showed sufficient agreement, if based on one fraction of readily biodegradable and two fractions of less easily biodegradable organic matter. The shape of the simulated graphs was affected considerably by the value of the maintenance energy requirement rate qm and could be improved by reducing the standard value qm = 1 d(-1) to qm = 0.1 d(-1). Only little agreement was achieved when comparing the results of the OUR-experiments with the VFA- and DOC-concentrations. Experiments with additional trace elements and vitamins led to an increase in the OUR and proved that the oxygen consumption was not exclusively determined by the availability of organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号