首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The catalytic properties of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from avian liver have been investigated. Solubilized and highly purified reductase preparations were not cold labile, and enzymic activity remained unchanged following preincubation at 37 degrees C. The pH optimum was 6.8--7.0 and maximal catalytic activity was achieved with 2 mM dithiothreitol and 0.75 M KCl. The heat stability of the enzyme was studied and the addition of 0.75 M KCl, 0.8 mg/ml bovine serum albumin and 5 mM NADPH reduced the inactivation of the purified reductase associated with heat treatment at 65 degrees C. At 37 degrees C, 0.8 mg/ml bovine serum albumin enhanced the purified reductase activity by 100 (+/- 20)%. An improved assay was developed for the avian hydroxymethylglutaryl-CoA reductase and the specific activity of the purified enzyme increased from 1550 to 3300 nmol . min-1 . mg-1. The Km values of solubilized and purified reductase for D-hydroxymethylglutaryl-CoA were 1.05 micrometer and 1.62 micrometer, and for NADPH, 1 mM and 263 micrometer, respectively. The activities of the reductase preparations were non-competitively inhibited by coenzyme A, acyl-CoA esters, and hydroxymethylglutarate. MgATP also reduced avian reductase activity. These modulators may play a role in the cellular regulation of the reductase activity.  相似文献   

2.
An assay procedure for HMG-CoA reductase is described which allows rapid measurement of the activity of this enzyme in isolated rat hepatocytes. In a one step procedure digitonin permeabilizes the plasma membrane and at the same time HMG-CoA reductase activity is measured. Digitonin at a concentration of 64 micrograms per mg of cell protein was found to be optimal for exposing microsomal HMG-CoA reductase to the assay components. The enzyme assay is linear with time up til 5 min and with protein concentrations in the range of 0.06-0.6 mg of cell protein per assay. It is shown that cellular enzyme activity is affected by preincubation of intact hepatocytes with a variety of short-term modulators of hepatic cholesterogenesis.  相似文献   

3.
An assay method is described for measurement of absolute concentrations of the molybdenum cofactor, based on complementation of the defective nitrate reductase ('apo nitrate reductase') in extracts of the nit-1 mutant of Neurospora crassa. A number of alternative methods are described for preparing, anaerobically, molybdenum-cofactor-containing solutions from sulphite oxidase, xanthine oxidase and desulpho xanthine oxidase. For assay, these were mixed with an excess of extract of the nit-1 mutant, incubated for 24 h at 3.5 degrees C then assayed for NADPH:nitrate reductase activity. In all cases, the specific activity of the molybdenum cofactor, expressed as mumol of NO2-formed/min per ng-atom of Mo added from the denatured molybdoenzyme , was 25 +/- 4, a value that agrees with the known catalytic activity of the nitrate reductase of wild-type Neurospora crassa. This indicates that, under our conditions, there was quantitative transfer of the molybdenum cofactor from denatured molybdoenzyme to yield fully active nitrate reductase. Comparable cofactor assay methods of previous workers, apparently indicating transfer efficiencies of at best a few per cent, have never excluded satisfactorily the possibility that cofactor activity arose, not from stoichiometric constituents of the molybdoenzymes , but from contaminants. The following factors were investigated separately in developing the assay:the efficiency of extraction of the cofactor from the original enzyme, the efficiency of the complementation reaction between cofactor and apo nitrate reductase, and the assay of the resultant nitrate reductase, which must be carried out under non-inhibitory conditions. Though the cofactor is unstable in air (t1/2 about 15 min at 3.5 degrees C), it is stable when kept anaerobic in the presence of sodium dithionite, in aqueous solution or in dimethyl sulphoxide (activity lost at the rate of about 3%/24 h at 20-25 degrees C). Studies of stabilities, and investigations of the effect of added molybdate on the assay, permit conclusions to be drawn about the ligation of molybdenum to the cofactor and about steps in incorporation of the cofactor into the apoenzyme. Though the development of nitrate reductase activity is slow at 3.5 degrees C (t1/2 1.5-3 h) the complementation reaction may be carried out in high yield, aerobically. This is ascribed to rapid formation of an air-stable but catalytically inactive complex of the cofactor, as a precursor of the active nitrate reductase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Since ferredoxin-dependent sulfite reductase (EC 1.8.7.1) and nitrite reductase (EC 1.7.7.1) can both catalyze the reduction of SO2-3 and NO?2, physiological and biochemical evidence is needed for properly classifying the two enzyme activities. They were therefore compared during ontogeny of pea leaves and in the effect of their products, sulfide and ammonium, on their catalytic activity. In the crude extract of the young second leaf of pea plants, Pisum sativum L. cv. Vatters Frühbusch, no ferredoxin-nitrite reductase activity could be detected, but ferredoxin-sulfite reductase and ATP-sulfurylase (EC 2.7.7.4), measured for comparison, were at 24 and 14%, respectively, of their maximal activity per leaf. After 11 and 12 days, respectively, ATP-sulfurylase and ferredoxin-sulfite reductase were no longer detectable, whereas ferredoxin-nitrite reductase was still at more than 30% of its maximal activity per leaf. Ferredoxin-sulfite reductase was inhibited by 50% with 18 μM and 100% with 30 μM sulfide produced by this enzyme during its assay. Sulfide at 100 μM added to the assay mixture completely inhibited ferredoxin-sulfite reductase activity in the crude extract, the 30000 g pellet and its supernatant. The same addition reduced ferredoxinnitrite reductase activity by 20% in the crude extract and by 100% in the 30000 g pellet. NH+4 at 100 μM did not affect ferredoxin-sulfite reductase or ferredoxin-nitrite reductase activity. The inhibition by sulfide and the changes in activity during ontogeny similar to ATP-sulfurylase (which catalyzes the first step of assimilatory sulfate reduction) represent biochemical and physiological evidence for the correct classification of ferredoxin-sulfite reductase. The complete inhibition of ferredoxin-nitrite reductase activity in the 30000 g pellet by S2- indicates that this activity was due to a ferredoxin-sulfite reductase.  相似文献   

5.
An enzymic activity which competes with 3-hydroxy-3-methylglutaryl coenzyme A reductase for D-hydroxymethylglutaryl CoA has been found in isolated rat liver microsomes and in microsomal extracts. The presence of this activity in enzyme preparations causes a decrease in the rate of mevalonate formation leading to an underestimation of reductase activity and an overestimation of the apparent Km of the reductase. The product formed by this competing enzymic activity behaves similarly to, but not identically with, mevalonolactone when chromatographed on Bio-Rad AG 1-x8 formate, which is used in many reductase assay procedures to separate mevalonolactone from hydroxymethylglutaryl CoA. Removal of this competing enzymic activity from reductase preparations can be accomplished by gel filtration using Bio-Gel A 1.5m, by washing the microsomes or by incubating the microsomal extract at 37 degrees C. Using enzyme preparations free of this competing enzymic activity, the apparent Km values of the reductase for D-hydroxymethylglutaryl CoA and NADPH were found to be 1.3 and 26 micronM respectively.  相似文献   

6.
Activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34) was measured in intestinal mucosa of the human gastrointestinal tract. Activity was highest in gastric mucosa (18.2 pmol per mg per min) and there was a constant low level in the small bowel and colon (approximately 10 pmol per mg per min). Phosphorylation/dephosphorylation modulation of intestinal reductase activity was demonstrated in normal mucosa. Expressed jejunal reductase activity was significantly higher in celiac sprue mucosa and mucosa from defunctionalized intestine of jejunoileal bypass patients. Enzyme activity also increased during 24-hr mucosal organ culture in the absence of exogenous cholesterol. Addition to the culture medium of pure cholesterol or 25-hydroxycholesterol dissolved in a small volume of ethanol suppressed the culture-induced increase to 86 +/- 3% and 69 +/- 5% of paired controls, respectively. This evidence suggests that a moderate degree of feedback regulation of intestinal cholesterol synthesis by luminal sterol occurs in man. Mucosal HMG-CoA reductase activity was also measured in patients with hyperlipoproteinemia. Patients with either predominant hypercholesterolemia or predominant hypertriglyceridemia lipid profiles had "normal" expressed reductase activity, but feedback regulation by free cholesterol could not be demonstrated in either group under these conditions.  相似文献   

7.
Brief red light irradiation (5 min) of etiolated pea seedlings causes a 40 to 50% decline in microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and far red reversal experiments indicate phytochrome mediation. The response is apparent at the earliest assay time, 5 min after irradiation, hence there is little or no lag period; a substantial change occurs within 10 min, and a 24% decrease at 1 h. Activity remains low for about 24 h. The response half-time is about 25 min. Cordycepin affects activity only after 3 h; cycloheximide inhibits only 6% at 1 h and has no effect on activity for at least 20 to 30 min after it blocks protein synthesis. It is concluded that phytochrome regulates reductase activity indirectly through a posttranslational mechanism which causes a stable change in enzyme activity; there is no indication that phytochrome acts by binding directly to the reductase. The decline in reductase activity following irradiation, or cycloheximide treatment, does not follow first-order kinetics. Mixing experiments suggest increased levels of a reductase inactivator in irradiated tissues. The low reductase activity in green seedlings is increased by treatment with dibutyryl-cyclicAMP. Abscisic acid and cholesterol applied to etiolated seedlings reduce activity of the enzyme but gibberellic acid has no effect. However, abscisic acid and cholesterol added to reaction mixtures do not inhibit activity. The metabolic consequences of the rapid light-induced enzyme response may trigger, or contribute to, later biochemical responses previously assumed to be under more direct phytochrome control.  相似文献   

8.
9.
The regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A:cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine was studied in vitro. Preparing intestinal microsomes in the presence of 50 mM NaF caused a 64% decrease in the reductase activity. It had no effect on acyl-CoA:cholesterol acyltransferase activity. Microsomes that were prepared in NaF were incubated with intestinal cytosol, a partially purified phosphatase from cytosol, and Escherichia coli alkaline phosphatase. All three preparations increased 3-hydroxy-3-methylglutaryl-CoA reductase by two- or three-fold suggesting dephosphorylation and 'reactivation' of enzyme activity. Cytosol caused a 78% increase in acyl-CoA:cholesterol acyltransferase activity, but neither the partially purified phosphatase nor the E. coli alkaline phosphatase affected the acyltransferase activity. Microsomes incubated with increasing concentrations of MgCl2 and ATP decreased both the activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acylcoenzyme A:cholesterol acyltransferase in a step-wise fashion. Whereas this inhibitory effect was specific for reductase, the effect on acyl-CoA:cholesterol acyltransferase activity was secondary to the presence of ATP in the assay mixture. The 8500 X g supernatant of intestinal whole homogenate from isolated intestinal cells or scraped mucosa was incubated with MgCl2, ATP and NaF. In microsomes prepared from this supernatant, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase was significantly decreased. Again, no change was observed in the acyltransferase activity. The rate of cholesterol esterification in isolated intestinal cells was not affected by 0.1 mM cAMP or 50 mM NaF. We conclude that under conditions which regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in rabbit intestine by phosphorylation-dephosphorylation, no regulation of acyl-CoA:cholesterol acyltransferase activity is observed.  相似文献   

10.
The optimal conditions for identification of mevalonic acid as the product of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase are described, as well as the effect of different buffer constituents on the enzyme activity. Under the chosen assay conditions, reductase activity from neonatal chick liver increased with the incubation time up to 60 min and was proportional to the amounts of protein added in a range of 0.1-0.5 mg. The specific activity was maximal in brain and liver and lower in intestine of 6-day-old chicks. Thermostability of hepatic reductase was studied. When microsomal preparations were maintained at 4 degrees C, reductase activity remained unchanged for 6 hr and decreased afterwards. Addition of 50 mM KF to the homogenization medium had no effect on the reductase activity. Similarly, preincubation of microsomal preparations with 105,000 g supernatants in the presence or absence of KF did not significantly increase the reductase activity. These results suggest that HMG-CoA reductase was isolated from neonatal chick in the fully activated form.  相似文献   

11.
3-Hydroxy-3-methylglutaryl coenzyme A reductase has been purified from rat liver microsomes with a recovery of approx. 25%. The enzyme was homogeneous on gel electrophoresis and enzyme activity comigrated with the single protein band. The molecular weight of the reductase determined by gel filtration on Sephadex G-200 was 200,000. SDS-polyacrylamide gel electrophoresis gave a subunit molecular weight of 52,000 +/- 2000, suggesting that the enzyme was a tetramer. The specific activities of the purified enzyme obtained from rats fed diets containing 0% or 5% cholestyramine were 11,303 and 19,584 nmol NADPH oxidized/min per mg protein, respectively. The reductase showed unique binding properties to Cibacron Blue Sepharose; the enzyme was bound to the Cibacron Blue via the binding sites for both substrates, NADPH and (S)-3-hydroxy-3-methylglutaryl coenzyme A. Antibodies prepared against purified reductase inactivated 100% of the soluble and at least 91% of the microsomal enzyme activity. Immunotitrations of solubilized enzyme obtained from normal and cholestyramine-fed rats indicated that cholestyramine feeding both increased the amount of enzyme protein and resulted in enzyme activation. Administration of increasing amounts of mevalonolactone to rats decreased the equivalence point obtained from immunotitration studies with solubilized enzyme. These data indicate that the antibody cross-reacts with the inactive enzyme formed after mevalonolactone treatment.  相似文献   

12.
Metylomonassp.GYJ3菌的甲烷单加氧酶(MMO)粗酶提取液经DEAE-SepharoseCL-6B阴离子交换层析、SephadexG-100凝胶过滤层析和DEAE-TSKgelHPLC分离纯化出MMO还原酶组分.经HPLC分析,纯度大于95%,纯化倍数为4.4,加入至MMO羟基化酶和调节蛋白B的体系中表现比活为228nmol环氧丙烷每分钟毫克蛋白.SDS-PAGE电泳表明还原酶由一种亚基组成,分子量42kD.ICP-AES测定还原酶的Fe含量为1.83molFe每mol蛋白.UV-Vis光谱表明还原酶除280nm蛋白质特征峰外在460nm有最大吸收峰,且A280nm/A460nm为2.50,与其它黄素一铁硫蛋白相似,推测还原酶可能含一个FAD辅基和Fe2S2中心.在厌氧条件下,还原酶能够和NADH作用,UV-Vis光谱分析表明还原酶460nm处特征吸收峰消失,说明在MMO催化过程中还原酶接受NADH的电子.DEAE-SepharoseCL-6B阴离子交换层析分离出调节蛋白B,部分纯化的调节蛋白B的分子量大约在20kD,它能够提高MMO比活性40倍,MMO还原酶和调节蛋白B单独存在时不具有MMO  相似文献   

13.
The activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) has been demonstrated both in homogenates and microsomes of the S3G strain of HeLa cells. It was increased 8- to 10-fold by the removal of serum from the growth medium. The presence of steroids, specifically of the glucocorticoid series, in the serum-less growth medium elicited an additional 100 to 345% increase over the serum-less control, whereas the addition of N6,O2'-dibutyryl adenosine 3':5'-monophosphate to the medium or dexamethasone to the assay mixture was without any stimulatory effect. Both inductions were blocked by cycloheximide and actinomycin D, suggesting a protein synthesis-dependent elevation of enzyme activity. Glucocorticoids were effective in the induction at concentrations ranging from 10(-6) to 10(-8) M and there was a demonstrated parallel between the magnitude of enzyme induction and glucocorticoid potency. The HMG-CoA reductase activities from steroid-induced and control cultures had identical assay characteristics (pH optima and apparent Km values for both NADPH and HMG-CoA). This induction of the rate-controlling enzyme of cholesterogenesis occurred despite the observation that glucocorticoids specifically depress the rate of acetate or water, but not mevalonate, incorporation into cholesterol.  相似文献   

14.
A system for the assay of 3-hydroxy-3-methyglutaryl (HMG) coenzyme A (CoA) reductase in digitonin-permeabilized Chinese hamster ovary cells is described. Under these conditions, HMG-CoA reductase remained intact and associated with the endoplasmic reticulum, and values for Km (HMG-CoA), Ki (mevinolin), and active/total activity were similar to those seen in sonicated cell preparations. However, the mechanism by which this rapidly turned over (half-life approximately 2 h) enzyme is degraded was disrupted. Addition of ATP at physiological concentrations to digitonin-permeabilized cells resulted in the rapid, irreversible loss of enzyme activity. Immunoblot analysis showed that this loss of activity was followed by cleavage of the intact 97-kilodalton enzyme to a 68-kilodalton fragment which was distinct from the catalytically active fragments generated by nonspecific proteolysis in sonicated cell homogenates. Assay of a lysosomal marker enzyme confirmed that ATP-mediated inactivation and cleavage of reductase was not due to release of lysosomal proteases. The possible role of ATP in phosphorylation, inactivation, and degradation of reductase is discussed.  相似文献   

15.
This paper describes an effective method for the solubilization of microsomal HMG-CoA reductase from rat liver. Exposing the microsomes to a freeze-thaw treatment solubilized 80% of the microsomal reductase activity. Subsequently, a 25-fold purification has led to an enzyme preparation with a specific activity of 10–14 nmoles MVA per min per mg of protein and an increased stability.  相似文献   

16.
The regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A: cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine was studied in vitro. Preparing intestinal microsomes in the presence of 50 mM NaF caused a 64% decrease in the reductase activity. It had no effect on acyl-CoA: cholesterol acyltransferase activity. Microsomes that were prepared in NaF were incubated with intestinal cytosol, a partially purified phosphatase from cytosol, and Escherichia coli alkaline phosphatase. All three preparations increased 3-hydroxy-3-methylglutaryl-CoA reductase by two- or three-fold suggesting dephosphorylation and ‘reactivation’ of enzyme activity. Cytosol caused a 78% increase in acyl-CoA: cholesterol acyltransferase activity, but neither the partially purified phosphatase nor the E. coli alkaline phosphatase affected the acyltransferase activity. Microsomes incubated with increasing concentrations of MgCl2 and ATP decreased both the activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acylcoenzyme A: cholesterol acyltransferase in a step-wise fashion. Whereas this inhibitory effect was specific for reductase, the effect on acyl-CoA: cholesterol acyltransferase activity was secondary to the presence of ATP in the assay mixture. The 8500×g supernatant of intestinal whole homogenate from isolated intestinal cells or scraped mucosa was incubated with MgCl2, ATP and NaF. In microsomes prepared from this supernatant, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase was significantly decreased. Again, no change was observed in the acyltransferase activity. The rate of cholesterol esterification in isolated intestinal cells was not affected by 0.1 mM cAMP or 50 mM NaF. We conclude that under conditions which regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in rabbit intestine by phosphorylation-dephosphorylation, no regulation of acyl-CoA: cholesterol acyltransferase activity is observed.  相似文献   

17.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) activity (mevalonate:NADP+ oxidoreductase )CoA-acylating) EC 1.1.1.34) was demonstrated in beef adrenal cortex. Most of the HMG-CoA reductase activity is in the microsomal fraction while a small percentage of the activity is associated with the mitochondria, Mitochondria purified on a linear sucrose gradient are enriched in HMG-CoA reductase and cytochrome c oxidase activities. The reductase present in microsomal preparations from the whole adrenal cortex has an apparent Km of 5.6 X 10(-5) M for (R,S)-HMG-CoA. Reductase activities found in the microsomal fractions from the zona glomerulosa, the zona fasciculata, and the zona reticularis were 1.32, 7.37, and 9.74 nmol mevalonate formed per milligram protein in 30 min respectively.  相似文献   

18.
'Expressed' and 'total' activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) were measured in freeze-clamped samples of mammary glands from lactating rats at intervals throughout the 24 h light/dark cycle. 'Expressed' activities were measured in microsomal fractions isolated and assayed in the presence of 100 mM-KF. 'Total' activities were determined in microsomal preparations from the same homogenates but washed free of KF and incubated with exogenously added sheep liver phosphoprotein phosphatase before assay. Both 'expressed' and 'total' activities of HMG-CoA reductase underwent a diurnal cycle, which had a major peak 6 h into the light phase and a nadir 15 h later, i.e. 9 h into the dark period. Both activities showed a secondary peak of activity (around 68% of the maximum activity) at the time of changeover from dark to light, with a trough in the value of the 'expressed' activity that was close to the nadir value. 'Expressed' activity was lower than 'total' at all time points, indicating the presence of enzyme molecules inactivated by covalent phosphorylation. Nevertheless the 'expressed'/'total' activity ratio was comparatively constant and varied only between 43% and 75%. Immunotitration of enzyme activity, with antiserum raised in sheep against purified rat liver HMG-CoA reductase, confirmed the presence of both active and inactive forms of the enzyme and indicated that at the peak and nadir the variation in 'expressed' HMG-CoA reductase activity resulted from changes in the total number of enzyme molecules rather than from covalent modification. The sample obtained after 3 h of the light phase exhibited an anomalously low 'total' HMG-CoA reductase activity, which could be increased when Cl- replaced F- in the homogenization medium. The result suggests that at that time the activity of the enzyme could be regulated by mechanisms other than covalent phosphorylation or degradation.  相似文献   

19.
Mouse mammary carcinoma FM3A cells, which are able to grow in a serum-free medium, have novel characteristics that could be valuable in biochemical and somatic cell genetic studies. In FM3A cells grown in the presence of serum, both sterol synthesis and the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the major rate-limiting enzyme in the cholesterol biosynthetic pathway, were strongly suppressed by human low density lipoprotein (LDL). The addition of LDL (50 micrograms protein/ml) resulted in a 50% decrease in the reductase activity within 3 h and a 95% reduction after 24 h. Similarly, over 90% suppression of the reductase activity was obtained by the addition of LDL or mevalonolactone when the cells were grown on a serum-free medium. ML-236B (compactin), a specific inhibitor of HMG-CoA reductase, inhibited sterol synthesis from [14C]acetate by 80% at 1 microM. Reductase activity in FM3A cells was increased by 2.5- to 5-fold when the cells were treated with ML-236B (at 0.26-2.6 microM for 24 h). Thus, in FM3A cells, HMG-CoA reductase activity responded well to LDL, as is observed in human skin fibroblasts. Along with other novel features of this cell line, the present observations indicate that FM3A cells should be useful in biochemical and somatic cell genetic analysis of cholesterol metabolism, especially as regards the regulation of HMG-CoA reductase activity.  相似文献   

20.
 A resting-cell assay was established to evaluate the cholesterol reductase activity of Eubacterium coprostanoligenes ATCC 51222. Cell suspensions from cholesterol-free media rapidly reduced cholesterol to coprostanol. Optimal assay conditions in a 1-ml reaction mixture were determined to be up to 1 h of incubation and up to 0.25 mg bacterial protein/assay with at least 1 mM cholesterol as substrate. The cholesterol reductase activity in cells decreased as a function of storage time at 22°C, 4°C and −20°C. Filling the headspace of the reaction mixture with H2 increased the activity about 20%. Optimal cholesterol reductase activity occurred at pH 7.5 in sodium phosphate buffer. Pyruvate and reducing agents in the buffer increased the activity. This study has validated assay conditions for determination of cholesterol reductase activity in resting cells of E. coprostanoligenes. Received: 2 August 1994/Received revision: 15 November 1994/Accepted: 8 December 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号