首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clenbuterol, a beta-agonist, was determined in samples of beef liver and muscle. The method employed an acidic aqueous extraction followed by protein precipitation. The supernatant liquid was passed through a weak cation-exchange cartridge and then through a commercially available immunoaffinity cartridge. Clenbuterol was eluted from the immunoaffinity cartridge with 80% ethanol in water. The eluate was concentrated and analysed directly by reversed-phase liquid chromatography using gradient elution and UV detection at 245 nm. Detection limits were estimated to be 0.3 ng g−1 clenbuterol. A single immunoaffinity cartridge was used for ten sample extracts with no significant loss in capacity. No organic solvents other than ethanol and methanol were employed in the procedure. Recoveries of clenbuterol from samples of beef liver and muscle spiked at 2 and 5 ng g−1 carried through the entire procedure were 63±11% (range, 53–74%) compared to pure standards. Absolute recoveries of pure standards (30 ng clenbuterol) carried through the same analytical steps were 70±5% (n = 6), the losses being primarily due to the ion-exchange step.  相似文献   

2.
The objective of this study was to determine retinol, retinyl esters and retinol-binding protein (RBP) as well as carotenoids in plasma, urine, liver and kidneys of randomly selected domestic cats. Retinol (240±64 ng/ml, mean±S.D.) represented one-third of total retinyl esters (736±460 ng/ml) in plasma. Retinyl esters were stearate, palmitate and oleate representing 61±6, 36±13 and 5±3% of total retinyl esters, respectively. In half of the cats, retinyl esters (22±21 ng/ml) were found in the urine. Vitamin A in the livers (4317±1956 μg/g) was significantly higher than in the kidney cortex and medulla (14.16±8.92 and 7.59±4.52 μg/g, respectively, both P<0.001). RBP was detected in the plasma but not in the urine. Immunoreactive RBP was observed in hepatocytes and in the cells of the proximal tubules. β-Carotene was present in plasma but never in tissues. The results show that similar to canines differences in vitamin A metabolism in cats are related to the occurrence of retinyl esters in plasma. They differ, however, with regard to the tissue distribution of β-carotene and the excretion of vitamin A in the urine.  相似文献   

3.
研究利用高效液相色谱法研究了强力霉素在斑点叉尾 (Ictalurus punctatus)体内的药物动力学与消除规律, 有助于制定合理用药方案和休药期, 为水产品质量安全提供理论依据。(1)单次口服剂量 20 mg/kg 强力霉素在斑点叉尾 体内的药时数据符合二室开放式模型。药-时曲线呈明显双峰现象: 第一次达峰时, 强力霉素在肾、血和肌肉中浓度迅速上升, 达峰时间 Tmax (1)出现在 30min, 强力霉素在肝脏中浓度上升缓慢, 出现在 1h; 肝、肾、血和肌肉第二次达峰的时间 Tmax (2)出现在 8h, 第二次达峰浓度 Cmax(2)大于第一次的浓度Cmax (1)。 药-时曲线下面积(AUC): 肾、肝、血和肌肉分别为 63.242、1282.077、142.379、62.348 μg·h /mL。消除半衰期[T1/2b]: 肾、肝、血和肌肉分别为 40.668、48.767、36.527、31.091h, 平均滞留时间(MRT): 肾、肝、血和肌肉分别为 46.585、56.989、48.859、42.428h; (2)连续口服剂量 20 mg/kg 的强力霉素 5d, 停药后强力霉素在斑点叉尾 肝脏中浓度最高, 肌肉+皮中浓度最低。在不同组织中强力霉素的消除速率不同(P<0.05), 药物消除速度由高到低依次为肌肉+皮、肾脏、肝脏。若以肝脏为靶组织, 最高残留限量 300 μg/kg,休药期不低于 30d; 若以可食组织肌肉+皮为靶组织, 最高残留限量 300 μg/kg, 休药期不低于 19d。  相似文献   

4.
A sensitive analytical procedure for the determination of residues of leucomalachite green (LMG)-malachite green (MG) and leucogentian violet (LGV)-gentian violet (GV) in catfish or trout tissue is presented. Frozen (−20°C) fish fillets were cut into small pieces and blended in a Waring blender. A 20-g amount of homogenized fish tissue was extracted with acetonitrile-buffer, partitioned against methylene chloride, and cleaned up on tandem neutral alumina and propylsulfonic acid cation-exchange solid-phase extraction cartridges. Samples of 100 μl (0.8 g equiv.) were chromatographed isocratically in 10 min using an acetonitrile-buffer mobile phase on a short-chain deactivated (SCD) reversed-phase column (250×4.6 mm I.D.) in-line with a post-column PbO2 oxidation reactor. The PbO2 post-column reactor efficiently oxidized LMG to the chromatic MG, and LGV to the chromatic GV permitting visible detection at 588 nm for all four compounds. Linearity was demonstrated with standards over the range of 0.5–50 ng per injection. Recoveries of LMG, MG, LGV and GV from catfish tissues fortified at 10 ng/g were 75.4±3.0, 61.3±4.1, 72.6±3.7 and 87.9±2.5, respectively, while trout tissues fortified at 10 ng/g yielded recoveries of 82.6±2.3, 48.6±1.8, 72.1±2.1 and 83.8±4.6 (mean±S.D., N=4), respectively.  相似文献   

5.
A new and efficient procedure for the clean-up of tetracycline residues in animal tissues and egg prior to reversed-phase high-performance liquid chromatography is described. The principal steps involve homogenization of the tissues in sodium succinate buffer and methanol, followed by centrifugation and clean-up with metal chelate affinity chromatography (MCAC). After further concentration on an Empore extraction membrane with cation-exchange properties, the sample is analysed by HPLC with fluorescence detection. The method was tested on porcine kidney and muscle, bovine liver and whole chicken's egg. The recoveries were determined from spiked tissues for oxytetracycline, tetracycline, chlortetracycline and doxycycline and ranged from 40 to 70%, with repeatabilities below 10% R.S.D.. The analytical responses were linear in the range up to at least 1000 ng/g. The detection limits of the method were estimated at 0.42 ng/g of oxytetracycline, 0.49 ng/g of tetracycline, 0.66 ng/g of chlortetracycline and 1.38 ng/g of doxycycline in porcine muscle, using signal-to-noise ratios of 4:1. Similar detection limits were estimated for kidney, liver and egg. The measured limits of quantification were 2 ng/g for oxytetracycline, 3 ng/g for tetracycline, 4 ng/g for chlortetracycline and 5 ng/g for doxycycline in porcine kidney. The advantage of this method over existing methods is its increased limit of detection.  相似文献   

6.
氯霉素在罗非鱼体内的代谢和消除规律   总被引:1,自引:0,他引:1  
水产养殖动物口服氯霉素后可能在可食组织中造成残留,本文通过以50mg/kg鱼体重的氯霉素(CAP)的剂量对尼罗罗非鱼单次口灌给药,采用HPLC和GC-ECD分析方法研究了CAP在罗非鱼体内的代谢和消除规律。给药0.5h后,CAP在血浆和肝脏中的浓度均迅速上升,分别为4288.01±1285.53ng/mL和5214.18±1105.62ng/g,2h达到峰值22246.42±355.84ng/mL和25717.47±1740.66ng/g;而肌肉中CAP却上升较慢,2h仅为7744.08±2118.74ng/g,8h才达到峰值13232.89±1612.74ng/g,峰值仅约为血浆和肝脏的1/2。CAP在罗非鱼肌肉和肝脏中的消除速度均较慢,但肌肉比肝脏稍快,肌肉中第96d CAP降至为0.07±0.01ng/g,而肝脏中第120d尚在0.1ng/g以上,为0.25±0.06ng/g。肌肉和肝脏浓度常用对数-时间消除曲线方程分别为y=-0.0966x+5.4292;y=-0.053x+4.7258,二者的T1/2β为7.14d和13.08d。若要使CAP在罗非鱼肌肉和肝脏中的浓度降至0.1ng/g以下,则休药期分别需80.47d和132.61d。试验表明CAP在罗非鱼组织中消除缓慢,尤其在肝脏中,因此肝脏可以作为CAP残留监测的首选组织。    相似文献   

7.
This work presents the development and the validation of an LC–MS–MS method with atmospheric pressure chemical ionization for the quantitative determination of levamisole, an anthelmintic for veterinary use, in porcine tissue samples. A liquid–liquid back extraction procedure using hexane–isoamylalcohol (95:5, v/v) as extraction solvent was followed by a solid-phase extraction procedure using an SCX column to clean up the tissue samples. Methyllevamisole was used as the internal standard. Chromatographic separation was achieved on a LiChrospher® 60 RP-select B (5 μm) column using a mixture of 0.1 M ammonium acetate in water and acetonitrile as the mobile phase. The mass spectrometer was operated in MS–MS full scanning mode. The method was validated for the analysis of various porcine tissues: muscle, kidney, liver, fat and skin plus fat, according to the requirements defined by the European Community. Calibration graphs were prepared for all tissues and good linearity was achieved over the concentration ranges tested (r>0.99 and goodness of fit <10%). Limits of quantification of 5.0 ng/g were obtained for the analysis of levamisole in muscle, kidney, fat and skin plus fat tissues, and of 50.0 ng/g for liver analysis, which correspond in all cases to half the MRLs (maximum residue limits). Limits of detection ranged between 2 and 4 ng/g tissue. The within-day and between-day precisions (RSD, %) and the results for accuracy fell within the ranges specified. The method has been successfully used for the quantitative determination of levamisole in tissue samples from pigs medicated via drinking water. Moreover the product ion spectra of the levamisole peak in spiked and incurred tissue samples were in close agreement (based on ion ratio measurements) with those of standard solutions, indicating the worthiness of the described method for pure qualitative purposes.  相似文献   

8.
Human endometrium obtained from fresh hysterectomy specimens was perifused for 7 hr in 95% O2/5% CO2 at 37°C. The phase of the menstrual cycle was determined by histological examination. The concentrations of PGF, 6-keto-PGF and TxB2 in 20 min fractions of the perifusion medium were measured by radioimmunoassay and production rates were calculated in terms of dry weight of tissue. Biphasic patterns of production were observed; high initial values fell to about 20% at 2 hr and then increased to relatively stable values at about 4 hr which were maintained for the next 2 hr. During this latter period, production rates in endometria taken at different phases of the cycle differed markedly from each other; the production rates of PGF in secretory and early proliferative endometria were low (15.8 ± 2.6, mean ± SEM and 67.2 ± 8.3 ng/min/g respectively) whereas they were high in late proliferative and premenstrual endometria (188.0 ± 16.7 and 196.4 ± 16.9 ng/min/g respectively). The patterns of production of 6-keto-PGF and TxB2 were similar to those of PGF but the absolute values were much lower (<10%). We conclude that the observed rates of production of prostaglandins by perifused human endometrium are consistent with synthesis being stimulated either by estrogen or withdrawal of hormonal support and being inhibited by progesterone.  相似文献   

9.
A sensitive and rapid high-performance liquid chromatographic screening method is described for the determination of anabolic steroid trenbolone in bovine muscle and liver. Trenbolone was analyzed as α- and β-trenbolone. Samples were extracted with ethyl acetate and cleaned up on a silica solid-phase extraction (SPE) cartridge. Liver samples were cleaned up on a multifunctional SPE cartridge before using a silica SPE cartridge. Analysis of α- and β-trenbolone was performed by reversed-phase high-performance liquid chromatography (HPLC) with a fluorescence detector. The detection limits for this method were estimated to be 0.2 and 1.0 ng/g in bovine muscle and liver, respectively. The mean recoveries spiked in muscle at 2 ng/g and in liver at 10 ng/g were over 80%.  相似文献   

10.
A method was developed for the separation and quantification of the insecticide chlorpyrifos (O,O-diethyl-O[3,5,6-trichloro-2-pyridinyl] phosphorothioate), its metabolites chlorpyrifos-oxon (O,O-diethyl-O[3,5,6-trichloro-2-pyridinyl] phosphate) and TCP (3,5,6-trichloro-2-pyridinol), the anti-nerve agent drug pyridostigmine bromide (PB; 3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide), its metabolite N-methyl-3-hydroxypyridinium bromide, the insect repellent DEET (N,N-diethyl-m-toluamide), and its metabolites m-toluamide and m-toluic acid in rat plasma and urine. The method is based on using solid-phase extraction and high-performance liquid chromatography (HPLC) with reversed-phase C18 column, and gradient UV detection ranging between 210 and 280 nm. The compounds were separated using a gradient of 1–85% acetonitrile in water (pH 3.20) at a flow-rate ranging between 1 and 1.7 ml/min over a period of 15 min. The retention times ranged from 5.4 to 13.2 min. The limits of detection ranged between 20 and 150 ng/ml, while the limits of quantitation were between 150 and 200 ng/ml. Average percentage recovery of five spiked plasma samples was 80.2±7.9, 74.9±8.5, 81.7±6.9, 73.1±7.8, 74.3±8.3, 80.8±6.6, 81.6±7.3 and 81.4±6.5, and from urine 79.4±6.9, 77.8±8.4, 83.3±6.6, 72.8±9.0, 76.3±7.7, 83.4±7.9, 81.6±7.9 and 81.8±6.8 for chlorpyrifos, chlorpyrifos-oxon, TCP, pyridostigmine bromide, N-methyl-3-hydroxypyridinium bromide, DEET, m-toluamide and m-toluic acid, respectively. The relationship between peak areas and concentration was linear over a range between 200 and 2000 ng/ml.  相似文献   

11.
A rapid and simple method was developed for the separation and quantification of the anti nerve agent drug pyridostignmine bromide (PB; 3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide) its metabolite N-methyl-3-hydroxypyridinium bromide, the insect repellent DEET (N,N-diethyl-m-toluamide), its metabolites m-toluamide and m-toluic acid, the insecticide permethrin (3-(2,2-dichloro-ethenyl)-2,2-dimethylcyclopropanecarboxylic acid(3-phenoxyphenyl)methylester), and two of its metabolites m-phenoxybenzyl alcohol, and m-phenoxybenzoic acid in rat plasma and urine. The method is based on using C18 Sep-Pak® cartridges for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) with reversed-phase C18 column, and gradient UV detection ranging between 208 and 230 nm. The compounds were separated using gradient of 1 to 99% acetonitrile in water (pH 3.20) at a flow-rate ranging between 0.5 and 1.7 ml/min in a period of 17 min. The retention times ranged from 5.7 to 14.5 min. The limits of detection were ranged between 20 and 100 ng/ml, while limits of quantitation were 150–200 ng/ml. Average percentage recovery of five spiked plasma samples were 51.4±10.6, 71.1±11.0, 82.3±6.7, 60.4±11.8, 63.6±10.1, 69.3±8.5, 68.3±12.0, 82.6±8.1, and from urine 55.9±9.8, 60.3±7.4, 77.9±9.1, 61.7±13.5, 68.6±8.9, 62.0±9.5, 72.9±9.1, and 72.1±8.0, for pyridostigmine bromide, DEET, permethrin, N-methyl-3-hydroxypyridinium bromide, m-toluamide, m-toluic acid, m-phenoxybenzyl alcohol and m-phenoxybenzoic acid, respectively. The relationship between peak areas and concentration was linear over the range between 100 and 5000 ng/ml. This method was applied to analyze the above chemicals and metabolites following their administration in rats.  相似文献   

12.
The production of vasodilatory, antiaggregatory prostacyclin (PGI2) and vasoconstrictory, proaggregatory thromboxane A2 (TxA2) by the placenta was studied in the cases of hypertensive pregnancy complications by superfusing pieces from maternal and fetal sides of placentae of 9 pre-eclamptic, 6 hypertensive and 11 healthy women and measuring the release of 6-keto-prostaglandin F (6-keto-PGF) and thromboxane B2 (TxB2), the breakdown products of PGI2 and TxA2 respectively, from the superfusate. Both sides of the placentae from the controls produced 6-keto-PGF (maternal side 0.5±0.1 ng/g/min dry weight of tissue, mean±SEM; fetal side 0.7±0.2 ng/g/min) and TxB2 (maternal side 2.5±0.4 ng/g/min; fetal side 2.7±0.5 ng/g/min with no correlation between the two. The 6-keto-PGF production was normal in hypertensive complications whereas the TxB2 production was increased on the fetal side of the placentae obtained from the pre-eclamptic (3.7±0.3 ng/g/min: p<0.05) and hypertensive women (4.1±0.4 ng/g/min; p<0.025). This may explain the occurrence of microthrombi and infarctions in placentae of hypertensive women.  相似文献   

13.
A rapid and sensitive HPLC method was developed for the determination of ampicillin residues in muscle tissues of beef, pork, chicken and catfish. Muscle tissues were blended with a food processor into paste. A 5-g aliquot of the blended tissues was homogenized with 14 ml of 0.01 M phosphate buffer (pH 4.5) using a tissue homogenizer. Proteins were precipitated with the addition of 1 ml trichloroacetic acid (75%, w/v) followed by centrifugation. After filtration, 1 ml of the supernatant was reacted with formaldehyde under acidic and heating conditions. The ampicillin fluorescent derivative was then analyzed by reverse phase HPLC with fluorescence detection. Recoveries of spiked ampicillin at 5, 10 and 20 ng/g were >85%, with coefficients of variation <5%. The limit of detection and limit of quantitation for ampicillin in the tissues were 0.6 ng/g and 1.5 ng/g, respectively. The method is also applicable to the analysis of ampicillin residue in dry milk powder.  相似文献   

14.
The determination of residues of benzimidazole using liquid chromatography and tandem mass spectrometry (LC–MS–MS) with ion spray ionization is described. Swine muscle tissue was spiked with a mixture of fifteen benzimidazoles, including metabolites of fenbendazole and albendazole. As clean-up procedure, an ethyl acetate extraction followed by solid-phase extraction on styrol-divinyl-benzene cartridge was used. The evaluation was performed by selecting the characteristic product ions for the benzimidazoles and using multiple reaction mode. 2-n-Butylmercaptobenzimidazole was used as internal standard. Blank muscle samples were fortified in the concentration range of 1–22 μg/kg. The limits of detection were below 6 μg/kg and the limits of quantification for most benzimidazoles were below 10 μg/kg. The matrix effect was checked using spiked muscle tissues of cattle and sheep as well as liver of cattle. Practical application will be shown by incurred egg material from laying hens treated with flubendazole. The recovery of the clean-up was mostly above 50% in muscle tissue and 70% in egg yolk.  相似文献   

15.
A high-performance liquid chromatographic method for the analysis of doxycycline in turkey plasma samples using demeclocycline hydrochloride as the internal standard was developed, optimized and validated, A one-step extraction procedure and an isocratic HPLC method with UV detection were used. No interferences with endogenous compounds or with the anticoagulant were observed, Linear calibration curves (r2>0.99) were obtained in water and plasma between 0 and 600 μg ml−1. Good recoveries for doxycycline (>66%) and demeclocycline (>72%) were seen both in water and in plasma, The coefficient of variation was <9.86% for within-day reproducibility and <7.53% for the between-day reproducibility. The deviation between the mean value found and the true value was <14.5% (accuracy). The limit of detection was 0.1 μg ml−1 in plasma samples. A good stability of doxycycline was observed in water and in plasma samples after storage for six months at −20°C (recovery >91%).  相似文献   

16.
A method of tissue superfusion has been used to measure prostanoid production by the ovine cervix during late pregnancy and at parturition. In late pregnancy (105–135 days of gestation) cervical tissue produced relatively large amounts of prostaglandin E (PGE); in comparison, the production rates of prostaglandin F (PGF), 13, 14-dihydro-15-oxo-prostaglandin F (PGFM) and 6-oxo-prostaglandin F were generally low. Thromboxane B2 (TXB2) production was minimal and often unmeasurable. There were significant increases in the production rates of PGE and 6-oxo-PGF by cervical tissue taken immediately after delivery, when compared to late pregnancy. Mean production rates of PGE increased from 19.8 ± 4.1 to 43.8 ± 7.4 ng/g. dry wt./min; 6-oxo-PGF production rates increased more than three-fold from 10.0 ± 2.7 to 34.6 ± 9.8 ng/g. dry wt./min (means ± S.E.M.). There were no significant differences in the rates of production of PGF, PGFM and TXB2 by the two groups.  相似文献   

17.
A sensitive and rapid method for measuring simultaneously adenosine, S-adenosylhomocysteine and S-adenosylmethionine in renal tissue, and for the analysis of adenosine and S-adenosylhomocysteine concentrations in the urine is presented. Separation and quantification of the nucleosides are performed following solid-phase extraction by reversed-phase ion-pair high-performance liquid chromatography with a binary gradient system. N6-Methyladenosine is used as the internal standard. This method is characterized by an absolute recovery of over 90% of the nucleosides plus the following limits of quantification: 0.25–1.0 nmol/g wet weight for renal tissue and 0.25–0.5 μM for urine. The relative recovery (corrected for internal standard) of the three nucleosides ranges between 98.1±2.6% and 102.5±4.0% for renal tissue and urine, respectively (mean±S.D., n=3). Since the adenosine content in kidney tissue increases instantly after the onset of ischemia, a stop freezing technique is mandatory to observe the tissue levels of the nucleosides under normoxic conditions. The resulting tissue contents of adenosine, S-adenosylhomocysteine and S-adenosylmethionine in normoxic rat kidney are 5.64±2.2, 0.67±0.18 and 46.2±1.9 nmol/g wet weight, respectively (mean±S.D., n=6). Urine concentrations of adenosine and S-adenosylhomocysteine of man and rat are in the low μM range and are negatively correlated with urine flow-rate.  相似文献   

18.
A method that allows the measurement of plasma and brain levels of the centrally-acting analgesic tramadol and its major metabolite (O-desmethyl tramadol) in mice and rats was developed using gas chromatography equipped with nitrogen–phosphorus detection (GC–NPD). Plasma samples were extracted with methyl tert.-butyl ether (MTBE) and were injected directly into the GC system. Brain tissue homogenates were precipitated with methanol, the resulting supernatant was dried then acidified with hydrochloric acid. The aqueous solution was washed with MTBE twice, alkalinized, and extracted with MTBE. The MTBE layer was dried, reconstituted and injected into the GC system. The GC assay used a DB-1 capillary column with an oven temperature ramp (135 to 179°C at 4°C/min). Dextromethorphan was used as the internal standard. The calibration curves for tramadol and O-desmethyl tramadol in plasma and brain tissue were linear in the range of 10 to 10 000 ng/ml (plasma) and ng/g (brain). Assay accuracy and precision of back calculated standards were within ±15%.  相似文献   

19.
Two recirculated marine seawater systems (capacities: 150 and 300 l) were used for the study on cadmium accumulation of biological filter sludge, by the musselMytilus edulis and the plaicePleuronectes platessa for a period of up to 300 days. In the contaminated system Cd concentrations varied from 2.5 to 7.0 g/l with a mean of 4.6±1.15 g/l (control: 1.04±0.46 g/l). Accumulation of Cd by the filter sludge from the control system as well as from the contaminated system was significant. Mean concentrations of control-and contaminated sludge over the experimental period were 2.01±0.86 ng Cd/mg dry wt and 9.98±3.55 ng Cd/mg dry wt respectively. Accumulation of Cd byM. edulis both in the control and in the contaminated system was considerable. After 163 days of exposure the whole body burden of mussels rose from 0.3 ng Cd/mg dry wt to around 10 ng Cd/mg dry wt in the controls and to 70 ng Cd/mg dry wt in the contaminated systems. Accumulation of Cd byP. platessa was analysed in backbone, fins, gills, liver, muscle (fillet), otolith and skin (dorsal and ventral) over a period of 280 days. Elevated Cd contents of livers from control specimens were noticed after 200 days and reached 1.75 ng Cd/mg dry wt in liver. There was considerable accumulation in the liver (maximum values: 3.0 ng Cd/mg dry wt) and gills (6.0 ng Cd/mg dry wt) of specimens from the contaminated system, Cd contents of plaice exposed for identical periods of time were very variable. Growth of plaice living in the contaminated system was at times significantly slower than that of the control group. Of the three biological objects tested-filter sludge,M. edulis, P. platessa—the mussel seemed to be the most sensitive indicator of elevated Cd-concentrations, while the reaction of the plaice was slow and less distinct.  相似文献   

20.
To understand the biological function of taurine, a study of taurine kinetics in the cat was undertaken. This paper describes a method developed for the accurate determination of 15N-taurine enrichment in cat urine by gas chromatography—mass spectrometry. 15N-Taurine was given to six animals as an oral bolus dose of 20 mg/kg body weight, and the urine was pooled on a daily basis. The hydrolysed or non-hydrolysed urine samples (for total and free taurine, respectively) were directly derivatized without further purification. The N-pentafluorobenzoyl di-n-butyl amide derivative obtained was analysed, and the fragment [M — (di-n-butyl amide)]+, carrier of the labelled nitrogen atom, was selectively recorded at m/z 302 (14N-taurine) and m/z 303 (15N-taurine). Calibration curves prepared in hydrolysed and non-hydrolysed urine samples spiked with 15N-taurine gave similar slopes to the calibration curve prepared in water. The average coefficient of variation observed for the mole percent excess in the non-hydrolysed samples was 1.22% (n = 92) and for the hydrolysed urine 1.00% (n = 98). There was no significant difference between free and total taurine enrichment. The half-life of taurine in cat body was found to be 29.3 ± 2.9 h and 35.0 ± 1.4 h for free and total taurine, respectively (non-significant). The taurine body pool, calculated by extrapolation of the curve to zero time, had a value of 137 ± 22 ng/kg and 157 ± 11 mg/kg for free and total taurine, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号