共查询到20条相似文献,搜索用时 0 毫秒
1.
Nucleotide sequence of the secA gene and secA(Ts) mutations preventing protein export in Escherichia coli. 总被引:25,自引:14,他引:11 下载免费PDF全文
The DNA sequence of the secA gene, essential for protein export in Escherichia coli, was determined and found to encode a hydrophilic protein of 901 amino acid residues with a predicted molecular weight of 101,902, consistent with its previously determined size and subcellular location. Sequence analysis of 9 secA(Ts) mutations conferring general protein export and secA regulatory defects revealed that these mutations were clustered in three specific regions within the first 170 amino acid residues of the SecA protein and were the result of single amino acid changes predicted to be severely disruptive of protein structure and function. The DNA sequence immediately upstream of secA was shown to encode a previously inferred gene, gene X. Sequence analysis of a conditionally lethal amber mutation, am109, previously inferred to be located proximally in the secA gene, revealed that it was located distally in gene X and was conditionally lethal due to its polar effect on secA expression. This and additional evidence are presented indicating that gene X and secA are cotranscribed. 相似文献
2.
osmY, a new hyperosmotically inducible gene, encodes a periplasmic protein in Escherichia coli. 总被引:1,自引:0,他引:1 下载免费PDF全文
A new osmotically inducible gene in Escherichia coli, osmY, was induced 8- to 10-fold by hyperosmotic stress and 2- to 3-fold by growth in complex medium. The osmY gene product is a periplasmic protein which migrates with an apparent molecular mass of 22 kDa on sodium dodecyl sulfate-polyacrylamide gels. A genetic fusion to osmY was mapped to 99.3 min on the E. coli chromosome. The gene was cloned and sequenced, and an open reading frame was identified. The open reading frame encoded a precursor protein with a calculated molecular weight of 21,090 and a mature protein of 18,150 following signal peptide cleavage. Sequencing of the periplasmic OsmY protein confirmed the open reading frame and defined the signal peptide cleavage site as Ala-Glu. A mutation caused by the osmY::TnphoA genetic fusion resulted in slightly increased sensitivity to hyperosmotic stress. 相似文献
3.
4.
Regulation of the Escherichia coli secA gene by protein secretion defects: analysis of secA, secB, secD, and secY mutants. 总被引:5,自引:11,他引:5 下载免费PDF全文
SecA protein synthesis levels were elevated 10- to 20-fold when protein secretion was blocked in secA, secD, and secY mutants or in a malE-lacZ fusion-containing strain but not in a secB null mutant. An active secB gene product was not required to derepress secA, since SecA levels were elevated during protein export blocks in secB secY and secB malE-lacZ double mutants. 相似文献
5.
The nitrogen-regulated Bacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to the Escherichia coli glnB-encoded PII protein. 总被引:4,自引:3,他引:4 下载免费PDF全文
Expression of beta-galactosidase encoded by the nrg-29::Tn917-lacZ insertion increases 4,000-fold during nitrogen-limited growth (M.R. Atkinson and S. H. Fisher, J. Bacteriol. 173:23-27, 1991). The chromosomal DNA adjacent to the nrg-29::Tn917-lacZ insertion was cloned and sequenced. Analysis of the resulting nucleotide sequence revealed that the Tn917-lacZ transposon was inserted into the first gene of a dicistronic operon, nrgAB. The nrgA gene encodes a 43-kDa hydrophobic protein that is likely to be an integral membrane protein. The nrgB gene encodes a 13-kDa protein that has significant sequence similarity with the Escherichia coli glnB-encoded PII protein. Primer extension analysis revealed that the nrgAB operon is transcribed from a single promoter. The nucleotide sequence of this promoter has significant similarity with the -10 region, but not the -35 region, of the consensus sequence for Bacillus subtilis sigma A-dependent promoters. 相似文献
6.
Escherichia coli protein X is the recA gene product. 总被引:16,自引:0,他引:16
Escherichia coli protein X is known to be made in large amounts following DNA damage or inhibition of DNA replication. We have shown that it is identical to the recA gene product by partial proteolytic digestion of the radiochemically pure proteins and analysis by electrophoresis on polyacrylamide-sodium dodecyl sulfate gels. 相似文献
7.
The structure and expression of the distal part of the malK-lamB operon in Escherichia coli was studied. DNA sequencing was performed as far as a HinfI restriction site located 1313 base-pairs downstream from gene lamB. The open reading frame, formerly called molA, which begins 245 base-pairs downstream from gene lamB, is longer than was initially thought, and was renamed malM. It could encode a protein of 306 amino acid residues. The complete malM open reading frame was cloned under control of the tac 12 promoter. In maxicells, the resulting plasmid permitted tac12-promoted synthesis of two polypeptides, encoded by gene malM, with apparent molecular weights of 37 X 10(3) and 34.5 X 10(3). We provide strong evidence that the 34.5 X 10(3) Mr protein is derived from the 37 X 10(3) Mr protein by processing at the amino-terminal end, and that this processed form is located in the periplasmic space. We show that the chromosomal malM gene is expressed as part of the malK-lamB operon, and that its product is periplasmic. Finally, we demonstrate with nuclease S1 mapping experiments that the mRNA terminates at a typical rho-independent terminator located about 45 base-pairs beyond the end of gene malM, which is thus the last gene of the malK-lamB operon. 相似文献
8.
The replication initiator operon of promiscuous plasmid RK2 encodes a gene that complements an Escherichia coli mutant defective in single-stranded DNA-binding protein. 下载免费PDF全文
The amino acid sequence of the 13-kDa polypeptide (P116) encoded by the first gene of the trfA operon of IncP plasmid RK2 shows significant similarity to several known single-stranded DNA-binding proteins. We found that unregulated expression of this gene from its natural promoter (trfAp) or induced expression from a strong heterologous promoter (trcp) was sufficient to complement the temperature-sensitive growth phenotype of an Escherichia coli ssb-1 mutant. The RK2 ssb gene is the first example of a plasmid single-stranded DNA-binding protein-encoding gene that is coregulated with replication functions, indicating a possible role in plasmid replication. 相似文献
9.
The mouse fibroblast gene, JE, was one of the first platelet-derived growth factor-inducible genes to be described as such. The protein encoded by JE (mJE) is the prototype of a large family of secreted, cytokinelike glycoproteins, all of whose members are induced by a mitogenic or activation signal in monocytes macrophages, and T lymphocytes; JE is the only member to have been identified in fibroblasts. We report the identification of a human homolog for murine JE, cloned from human fibroblasts. The protein predicted by the coding sequence of human JE (hJE) is 55 amino acids shorter than mJE, and its sequence is identical to that of a recently purified monocyte chemoattractant. When expressed in COS cells, the human JE cDNA directed the secretion of N-glycosylated proteins of Mr 16,000 to 18,000 as well as proteins of Mr 15,500, 15,000, and 13,000. Antibodies raised against mJE recognized these hJE species, all of which were secreted by human fibroblasts. hJE expression was stimulated in HL60 cells during phorbol myristate acetate-induced monocytoid differentiation. However, resting human monocytes constitutively secreted hJE; treatment with gamma interferon did not enhance hJE expression in monocytes, and treatment with phorbol myristate acetate or lipopolysaccharide inhibited its expression. Thus, human JE encodes yet another member of the large family of JE-related cytokinelike proteins, in this case a novel human monocyte and fibroblast secretory protein. 相似文献
10.
11.
The bkdR gene of Pseudomonas putida is required for expression of the bkd operon and encodes a protein related to Lrp of Escherichia coli. 总被引:2,自引:7,他引:2 下载免费PDF全文
Branched-chain keto acid dehydrogenase is a multienzyme complex which is required for the metabolism of the branched-chain amino acids in Pseudomonas putida. The structural genes encoding all four proteins of the bkd operon have been cloned, and their nucleotide sequences have been determined (G. Burns, K. T. Madhusudhan, K. Hatter, and J. R. Sokatch, p. 177-184 in S. Silver, A. M. Chakrabarty, B. Iglewski, and S. Kaplan [ed.], Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology, American Society for Microbiology, Washington D.C., 1990). An open reading frame which encoded a protein with 36.5% amino acid identity to the leucine-responsive regulatory protein (Lrp) of Escherichia coli was found immediately upstream of the bkd operon. Chromosomal mutations affecting this gene, named bkdR, resulted in a loss of ability to use branched-chain amino acids as carbon and energy sources and failure to produce branched-chain keto acid dehydrogenase. These mutations were complemented in trans by plasmids which contained intact bkdR. Mutations affecting bkdR did not have any effect on transport of branched-chain amino acids or transamination. Therefore, the bkdR gene product must affect expression of the bkd operon and regulation must be positive. Mutations affecting bkdR could also be complemented by plasmids containing lrp of E. coli. This is the first instance of a Lrp-like protein demonstrated to regulate expression of an operon outside of E. coli. 相似文献
12.
The cytochrome bo complex of Escherichia coli is encoded by the cyoABCDE operon and functions as a redox-coupled proton pump. In this study, we have constructed eight cyoE deletion mutants and found that all the mutants were nonfunctional. Spectroscopic and heme analyses of the mutant oxidases revealed that the mutations specifically substituted protoheme IX for heme O present in the high-spin heme binding site. We found also that the overexpression of the cyoE gene in a cyo operon deletion strain resulted in a conversion of protoheme IX to heme O. Since the CyoE protein contains the putative allylic polyprenyldiphosphate binding domain, we concluded that the cyoE gene encodes a novel enzyme, protoheme IX farnesyltransferase, essential for heme O biosynthesis. 相似文献
13.
14.
The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. 总被引:13,自引:5,他引:13 下载免费PDF全文
We have identified and functionally characterized a new Escherichia coli gene, dsbC, whose product is involved in disulfide bond formation in the periplasmic space. It corresponds to a previously sequenced open reading frame mapping upstream of recJ with no previously assigned function. Null mutations in dsbC were obtained using a screen for dithiothreitol (DTT)-sensitive mutants and were shown to result in the accumulation of reduced forms of a variety of disulfide bond-containing periplasmic proteins. This defect could be rescued by the addition of either oxidized DTT or cystine or by multicopy expression of dsbA, a known periplasmic disulfide oxidase. The DsbC protein is synthesized as a precursor form of 25.5 kDa which is processed to a 23.3 kDa mature species located in the periplasmic space. The DsbC protein was overexpressed, purified to homogeneity and shown to catalyse the reduction of insulin in a DTT-dependent manner at levels comparable with those of purified DsbA. The replacement of either cysteine residue of the predicted active site, F-(X4)-C-G-Y-C, completely inactivates DsbC protein function. We have further shown that in vivo overexpression of DsbC can functionally substitute for a loss of DsbA function. Taken together, all of our results demonstrate that DsbC acts in vivo as a disulfide oxidase. 相似文献
15.
Nucleotide sequence analysis and transposon 5 (Tn5) insertional mutagenesis indicate that the Escherichia coli gene pheR encodes tRNA(Phe) and not a repressor protein as previously reported. The coding region of pheR is identical to that of three other cloned tRNA(Phe) genes, pheU, pheV, and pheW. Multicopy plasmids carrying pheR, like those carrying pheU, pheV, or pheW, complement a temperature-sensitive lesion in the gene for the alpha-subunit of phenylalanyl-tRNA synthetase (pheS). The nucleotide sequences of the 5'-flanking DNA of pheR, pheU, and pheW are almost identical but are quite different from the same region of pheV. By comparison with pheV, which has two tandem promoters, pheR was found to have a single promoter. The expression of pheA (encoding chorismate mutase/prephenate dehydratase) in strains carrying the pheR374 allele was decreased to similar extents by multicopy plasmids containing either pheR or pheV. It is proposed that this decrease in pheA expression and the increase in expression of pheA previously reported for chromosomal pheR mutants are both mediated through the attenuation control mechanism that regulates pheA. 相似文献
16.
LexA2 repressor was partially inactivated after mitomycin C or UV light treatment in a recA+ or recA85(Prtc) (protease constitutive) host background. LexA2 protein was cleaved, but the reaction was slower than that observed for LexA+ repressor. lexA2 had a C-to-T transition at nucleotide 461 (Thr-154 to Ile). 相似文献
17.
C W Adams R P Lawther G W Hatfield 《Biochemical and biophysical research communications》1979,89(2):650-658
Transaminase B of K12 was purified to apparent homogeneity as measured by SDS acrylamide gel electrophoresis, immunoelectrophoresis, and amino terminal sequence analysis. The valine- and isoleucine-α-ketoglutarate dependent transaminase activities of pure enzyme as well as crude extracts were characterized by immunologic and kinetic methods. The data disprove the existence of a separate valine-α-ketoglutarate transaminase within the operon. 相似文献
18.
19.
Mutations conferring resistance to azide in Escherichia coli occur primarily in the secA gene. 总被引:2,自引:2,他引:2 下载免费PDF全文
Mutant strains of Escherichia coli were screened for the ability to grow on L agar plates containing 3.4 or 4.6 mM sodium azide. Most mutants had mutations located in the leucine region, presumably at the azi locus. Two of these mutants were found to have a mutation in the secA gene, but expression of the resistance phenotype also required the presence of upstream gene X. While a plasmid carrying the X-secA mutant gene pair was able to confer azide resistance to a sensitive host, a similar plasmid harboring the wild-type secA allele rendered a resistant strain sensitive to azide, indicating codominance of the two alleles. That azide inhibits SecA is consistent with the fact that SecA has ATPase activity, an activity that is often prone to inhibition by azide. 相似文献
20.
The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene. A gene that encodes a heat shock protein 总被引:34,自引:0,他引:34
J C Bardwell K Tilly E Craig J King M Zylicz C Georgopoulos 《The Journal of biological chemistry》1986,261(4):1782-1785
The Escherichia coli dnaJ gene product is required for bacteriophage lambda DNA replication at all temperatures. It is also essential for bacterial viability in at least some conditions, since mutations in it result in temperature-sensitive bacterial growth. We have previously cloned the dnaJ gene and shown that its product migrates as a Mr 37,000 polypeptide under denaturing conditions. Here we present the primary DNA sequence of the dnaJ gene. It codes for a processed basic protein (63 basic and 51 acidic amino acids) composed of 375 amino acids totaling Mr 40,973. The predicted NH2-terminal amino acid sequence, overall amino acid composition, and isoelectric point agree well with those of the purified protein. We present evidence that the rate of expression of the dnaJ protein is increased by heat shock under the control of the htpR (rpoH) gene product. 相似文献