首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome–genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I–III in one clade, while plastome IV appears to be closest to the common ancestor.  相似文献   

2.
Summary Clone banks of PvuII, BamHI and XhoI fragments were generated of the Solanum tuberosum cv Katahdin plastome. These clone banks, in conjunction with molecular hybridization to tobacco ctDNA probes, were used to construct a physical map of potato ctDNA. The potato plastome was found to be a circular molecule of 155–156 Kbp containing two inverted repeat regions of 23–27 Kbp. The arrangement of restriction sites is very similar to that of other Solanaceae plastomes. Heterologous hybridization to known ctDNA encoded gene probes from tobacco allowed us to establish a genetic map of the potato chloroplast genome. The arrangement of these genes on the potato plastome resembles that on most higher plant ctDNAs.  相似文献   

3.
A series of strains of the homozygous speciesOenothera grandiflora (characterized by the genome BB and plastome III) were combined with plastome IV fromO. parviflora (BC-IV) by means of appropriate crosses. An incompatibility between genome B and plastome IV is expressed in the haplo- and diplophase: (1) B-IV pollen, though normally developed, is largely inactive. The extent of the inactivation varies between different strains and shows a seasonal fluctuation as determined by seed set in outcrossing and selfing experiments. (2) In most of the strains lethality of BB-IV embryos is the rule, leading to empty seeds. This can be ameliorated by including another plastome in the zygotes and developing embryos on account of the biparental plastid transmission inOenothera. It can best be demonstrated in crosses with a seed parent having normal green plastids of plastome IV and mutated chlorophyll deficient plastids from a different plastome in the pollen parent, leading to variegated progeny as well as a remainder of empty seeds. (3) In about one-half of the strains the BB-IV plants exhibit a temporary bleaching of thevirescens type. The incompatibily between genome B and plastome IV does not support the earlier assumption that plastome IV is the ancestor of plastomes II, III, and V. Instead, a precursor plastome is postulated from which plastomes II, III, and IV are descended. While plastome I can be derived from II, only plastome V can be descended from plastome IV.Deceased August 28, 1998.  相似文献   

4.
A high-resolution genetic map of the Mus musculus molossinus (MSM) Japanese wild mouse strain was constructed with restriction landmark genomic scanning (RLGS) and compared with that of the laboratory strain C3H. MSM is phylogenetically 1 million years apart from common laboratory mouse strains and is distinctly resistant to chemical carcinogenesis. Since it exhibits frequent genetic polymorphisms with laboratory mice but can still be easily crossed with laboratory strains, hybrids between MSM and carcinogen-sensitive laboratory mouse strains provide excellent materials for analysis of modifier genes and genetic changes during carcinogenesis. We have generated MSM backcross progeny with the C3H strain, which is extremely sensitive to hepatocarcinogenesis, to construct the present map. RLGS profiles with two combinations of restriction enzymes (NotI–PvuII–PstI, NotI–PstI–PvuII) yielded more than 2000 spots each. The polymorphism rate was about 39.2%, and of a total of 1732 polymorphic spot loci identified, 1371 could be assigned to specific chromosomes by comparison with 79 microsatellite marker loci. Thus, 1450 loci, on all chromosomes except for Y, effectively mapped 90% of the genome (1431.7 cM length). Although some spots might be derived from the same NotI site, each NotI site potentially generating two fragments, the presence of at least 515 loci groups with different progeny distribution patterns dispersed through the genome with an average spacing of 3 cM, means that this genetic map should be useful for analysis of various biological phenomena, including carcinogenesis and ontogenesis, at the gene level. Received: 25 August 1999 / Accepted: 20 December 1999  相似文献   

5.
Summary The chloroplast DNAs (cpDNAs) of Oenothera berteriana and Oe. odorata (subsection Munzia) were examined by restriction endonuclease analysis with Sal I, Pvu II, Kpn I, Pst I, Hind III, and Bam HI. The fragment patterns show that these cpDNAs have all 133 restriction sites in common as well as a lot of individual bands. Nevertheless the cpDNAs of the two species can be distinguished by distinct differences in size between a small number of fragments. The 42 cleavage sites produced by Sal I, Pvu II and Kpn I were mapped on the circular cpDNAs. This was achieved by an approach which combined experimental and mathematical procedures. The overall serial order of the fragments was found to be the same for both cpDNAs. The size differences of individual fragments in the Sal I, Pvu II and Kpn I patterns between Oe. berteriana and Oe. odorata cpDNA are located within five regions scattered along the plastid chromosome. Two of these regions have been localized in the larger and one in the smaller of the two single-copy parts of the cpDNA molecule. The remaining two overlap the borders between the large single-copy and each of the duplicated parts of the molecule. The positions of distinct restriction sites are altered among the two Oenothera plastome DNAs by 0.02–0.4 MDa (30–600 base pairs). These alterations probably result from insertions/deletions.Abbreviations cpDNA chloroplast, plastid DNA - Oe. Oenothera - MDa Megadalton - rRNA, rDNA ribosomal RNA, DNA Dedicated to Professor Berthold Schwemmle, Tübingen, on the occasion of his 60th birthday  相似文献   

6.
Approximately 4200 nucleotides of the 16S/23S rDNA spacer and the 5 region flanking therrn operon of the plastid chromosomes representing the five basic, phylogenetically relatedEuoenothera plastomes were sequenced and compared. The sequences that harbor the putative replication origins are almost identical except for a 785-bp intercistronic segment between the genes for the 16S rRNA andtrnI. Differences are mainly caused by insertions/deletions and duplications; the predicted potential for formation of quite extensive secondary structure differs among the plastomes. Unexpected intraplastome variation has also been noted. Furthermore, the sequence-based and published genetically deduced plastome pedigrees differ significantly.  相似文献   

7.
A favourable combination of genetic features in the genus Oenothera offers access to fundamental biological aspects that are not readily approached with other materials. We have developed protocols for cell and tissue culture as well as for transformation, in order to establish the basis for a comprehensive cell and molecular biology of Euoenothera species, their genome/plastome hybrids and plastome mutants. Regeneration of plants from excised seedling parts (roots, hypocotyl, cotyledons, shoot tips) and leaf explants was optimal on NT medium containing 1 mg ⋅ l–1 6-benzylaminopurine and 3 mg ⋅ l–1 α-naphtalene acetic acid. This medium also proved to be efficient in the propagation of various wild-type genotypes, interspecific hybrids and plastome mutants. Using Ti-based approaches we also succeeded in generating transgenic Oenothera plants with relatively high efficiency. Received: 17 February 1997 / Revision received: 16 April 1997 / Accepted: 20 April 1997  相似文献   

8.
 Chloroplast DNA (cpDNA) of Paspalum dilatatum and P. notatum was digested singly or in combination with the restriction endonucleases PstI, PvuII, SalI, KpnI and XhoI. Data obtained from filter hybridization experiments with barley and wheat cpDNA probes were used to construct restriction site maps of the chloroplast genomes of the Paspalum species. The cpDNA fragments were ordered into a circular configuration of approximately 139.3 kbp that contained two inverted repeat regions of approximately 23 kbp and a small and large single-copy region of approximately 11 kbp and 83 kbp, respectively. The cpDNA maps showed that P. dilatatum and P. notatum shared a large number of restriction sites with the proportion of shared restriction sites S=0.90. No restriction site differences were detected in the KpnI maps. Eight species-specific restriction site differences that could be used to identify the cytoplasm of each Paspalum species were identified in the PstI, PvuII, SalI, and XhoI cleavage maps. The overall structural organization of the Paspalum cpDNAs is rather similar to those of most cpDNAs from other plants. The results presented in this study will be of value for exploring further phylogenetic relationships within the genus Paspalum. Received: 27 February 1997 / Accepted: 7 March 1997  相似文献   

9.
Summary The origins of chloroplast DNA (cpDNA) replication were mapped in two plastome types of Oenothera in order to determine whether variation in the origin of cpDNA replication could account for the different transmission abilities associated with these plastomes. Two pairs of displacement loop (D-loop) initiation sites were observed on closed circular cpDNA molecules by electron microscopy. Each pair of D-loops was mapped to the inverted repeats of the Oenothera cpDNA by the analysis of restriction fragments. The starting points of the two adjacent D-loops are approximately 4 kb apart, bracketing the 16S rRNA gene. Although there are small DNA length variations near one of the D-loop initiation sites, no apparent differences in the number and the location of replication origins were observed between plastomes with the highest (type I) and lowest (type IV) transmission efficiencies.  相似文献   

10.
Summary Two cryptic plasmids pMG110 (10.5 kb) and pMG120 (14.5 kb) isolated from Streptomyces luteolutescens were cleaved by restriction endonucleases BglII, KpnI, and SalGI. A physical map was constructed for pMG110. After denaturation and intrastrand reannealing, two types of snap-back structures were identified by electron microscopy, differing in the size of the loop (type 1, 1 kb; type 2, 1.6 kb), whereas the stem of both structures was about 190 bp long. Stem-loop structures of similar size were also observed in pMG120. In rare cases, both types of elements were present on the same DNA molecule. The analysis of BglII- and KpnI-generated fragments allowed the localization of the elements at two alternative positions on the physical map of pMG110.  相似文献   

11.
W. Stubbe 《Genetica》1964,35(1):28-33
In the subgenusEuoenothera, five plastid types can be identified. The same major groups of genome complexes as established byCleland, stand out when attention is focused on the co-operation between genomes and plastomes.Experiments on plastid competition and plastid-genotype compatibility lead to an unambiguous interpretation of phylogenetic relations within the subgenus.Based on a paper read at the XI International Congress of Genetics, The Hague, of which an abstract has been published in theProceedings, Vol. I, p. 131–132 (1963).  相似文献   

12.
Based on an analysis of results from experimental hybridization, the plants assigned byMunz toOenothera subg.Oenothera and subg.Raimannia, now divided into approximately 76 species, are referred to a single section,Oenothera. This section is in turn divided into five subsections:Euoenothera, Munzia, Raimannia, Emersonia, and an undescribed group of three species related toOenothera pubescens. Euoenothera is maintained in the traditional sense, and includes about 14 species of North America, widely naturalized elsewhere.Munzia consists of 45 species, comprising three series, and native to South America.Raimannia is restricted to a group of approximately 11 North American species.Emersonia comprises four rather heterogenous species of northern Mexico and southern New Mexico, of whichOenothera macrosceles, O. maysillesii, andO. organensis have been described. Within these four subsections, interspecific hybrids can be made in general, although plastid differentiation often leads to incompatibilities. With varying degrees of difficulty, hybrids were produced in all intersectional combinations involvingEuoenothera, Emersonia, Munzia, andRaimannia, the most difficult being those betweenEmersonia andRaimannia. Based on their habit and distribution,Emersonia species, and especiallyOenothera maysillesii, appear to resemble most closely the common ancestor of the section,Euoenothera andMunzia to have been derived from it or its common ancestor, andRaimannia perhaps to be more closely related to the phylogenetic branch that leads toEuoenothera.  相似文献   

13.
Chloroplast DNA replication was studied in the green, autotrophic suspension culture line SB-1 of Glycine max. Three regions (restriction fragments Sac I 14.5, Pvu II 4.1 and Pvu II 14.8) on the plastome were identified that displayed significantly higher template activity in in vitro DNA replication assays than all other cloned restriction fragments of the organelle genome, suggesting that these clones contain sequences that are able to direct initiation of DNA replication in vitro. In order to confirm that the potential in vitro origin sites are functional in vivo as well, replication intermediates were analyzed by two-dimensional gel electrophoresis using cloned restriction fragments as probes. The two Pvu II fragments that supported deoxynucleotide incorporation in vitro apparently do not contain a functional in vivo replication origin since replication intermediates from these areas of the plastome represent only fork structures. The Sac I 14.5 chloroplast DNA fragment, on the other hand, showed intermediates consistent with a replication bubble originating within its borders, which is indicative of an active in vivo origin. Closer examination of cloned Sac I 14.5 sub-fragments confirmed high template activity in vitro for two, S/B 5 and S/B 3, which also seem to contain origin sites utilized in vivo as determined by two-dimensional gel electrophoresis. The types of replication intermediate patterns obtained for these sub-fragments are consistent with the double D-loop model for chloroplast DNA replication with both origins being located in the large unique region of the plastome [17, 18]. This is the first report of a chloroplast DNA replication origin in higher plants that has been directly tested for in vivo function.  相似文献   

14.
Summary The streptococcal resistance plasmid pSM10 (8.3 kb), a deletion derivative of pSM10419 (22.9 kb) determining constitutive erythromycin and lincomycin resistance, was physically mapped with the restriction endonucleases AvaI, AvaII, EcoRI, HpaI, KpnI, PvuII (one site each), HindIII, HaeII (three sites each), HincII (four sites), and HhaI (five sites). Using the cryptic plasmid pVA318 as cloning vehicle, the largest HindIII fragment of pSM10 (3.3 kb) was shown to contain the erythromycin/lincomycin resistance gene(s) of the plasmid. The AvaII site of pSM10 proved to be suitable as a site for cloning AvaII-generated chromosomal DNA fragments from a group C streptococcal strain in the Challis strain of Streptococcus sanguis (group) H. A detailed physical map of the chimeric plasmid pSM10221 (12.8 kb), a fusion product of pSM10 and the staphylococcal chloramphenicol resistance plasmid pC221 (4.5 kb), is also presented. The plasmid chimera has properties making it potentially useful in development of a doubly selective streptococcal cloning vehicle by searching for insertional inactivation.  相似文献   

15.
Summary We have extended our work on structure/activity relationship studies of the neuropeptiden proctolin (H-Arg-Tyr-Leu-Pro-Thr-OH) by evaluating the effects of the following proctolin analogues: H-X1-Tyr-Leu-Pro-Thr-OH, where X1=d-Arg(I),N-Me-Arg (II), Can (III), Orn(di-Me) (IV), Orn (iPr) (V), Lys(N, N-di-Me) (VI), Lys(iPr) (VII), Lys(Nic) (VIII) andd-Lys(Nic) (IX). In analogues I–IX, the N-terminal Arg residue was replaced by basic amino acid derivatives with peptides containing amino acid residues with an isosteric system on the back side chain relative to Arg (compounds III, V and VI) orhomo-Arg (compound VII). Analogues I–IX were evaluated for myotropic activity on thein vitro heart preparation ofTenebrio molitor, whereas peptides II, V, and VII–IX were tested for contractile activity on the isolated foregut of locustSchistocerca gregaria. Peptide II and III showed full cardiotropic activity inT. molitor while peptides V and VII showed 40% and 15%, respectively, locust-gut contracting activity of proctolin.  相似文献   

16.
 Restriction fragment length polymorphism (RFLP) and the structure of ribosomal RNA genes (rDNA) were investigated in 117 landraces of foxtail millet, Setaria italica (L.) P. Beauv. Five RFLP phenotypes were found when the genomic DNA was digested with BamHI; these were named types I–V. Of these types I, II and III were the most frequent. Type I was mainly distributed in the temperature zone, type II in the Taiwan-Philippines Islands and type III in South Asia. Restriction mapping of the cloned rDNA and comparison with RFLP phenotypes showed that the different types originated from a polymorphism in the length within the intergenic spacer (IGS) and BamHI site changes within the IGS. Received: 28 August 1996 / Accepted: 28 February 1997  相似文献   

17.
Physical mapping of plastid DNA variation among eleven Nicotiana species   总被引:1,自引:0,他引:1  
Summary Plastid DNA of seven American and four Australian species of the genus Nicotiana was examined by restriction endonuclease analysis using the enzymes Sal I, Bgl I, Pst I, Kpn I, Xho I, Pvu II and Eco RI. These endonucleases collectively distinguish more than 120 sites on N. tabacum plastid DNA. The DNAs of all ten species exhibited restriction patterns distinguishable from those of N. tabacum for at least one of the enzymes used. All distinctive sites were physically mapped taking advantage of the restriction cleavage site map available for plastid DNA from Nicotiana tabacum (Seyer et al. 1981). This map was extended for the restriction endonucleases Pst I and Kpn I. In spite of variation in detail, the overall fragment order was found to be the same for plastid DNA from the eleven Nicotiana species. Most of the DNA changes resulted from small insertions/deletions and, possibly, inversions. They are located within seven regions scattered along the plastid chromosome. The divergence pattern of the Nicotiana plastid chromosomes was strikingly similar to that found in the genus Oenothera subsection Euoenothera (Gordon et al. 1982). The possible role of replication as a factor in the evolution of divergence patterns is discussed. The restriction patterns of plastid DNA from species within a continent resembled each other with one exception in each instance. The American species N. repanda showed patterns similar to those of most Australian species, and those of the Australian species N. debneyi resembled those of most American species.Abbreviations ims isonuclear male sterile - ptDNA plastid chloroplast DNA - Rubisco ribulosebisphosphate carboxylase/oxygenase - kbp kilobase pairs - LSU large subunit of Rubisco  相似文献   

18.
Mating systems of Angiosperms are important determinants of population genetic structure and evolutionary potential. Nicotiana longiflora and N. plumbaginifolia are self-compatible, sister species, with contrasting floral morphology and can be found in allopatry and sympatry in North Argentina. In two sympatric and 10 nearby allopatric populations we studied their natural interpopulational variability and sympatry effects on corolla length and anther–stigma distance. We also estimated seed set by selfing and via pollinators using pollination treatments. Both corolla length and anther–stigma distance varied significantly among N. longiflora, but not among N. plumbaginifolia populations. We did not detect an effect of sympatry in either species for any of the floral traits studied. Pollination treatments suggest that N. longiflora is mainly an outcrosser, although selfing occurs at some extent. Seed set attributed to pollinators was significantly higher in N. longiflora whereas most seeds in N. plumbaginifolia were sired through self-pollination. In N. plumbaginifolia, selfing seems to assure reproduction in sympatric populations, where floral visitors have a strong preference for N. longiflora. Corolla length was significantly negatively correlated with an increase in the percentage of self-seeds estimated by pollination treatments. Within N. longiflora, anther–stigma distance showed a positive correlation with selfing.  相似文献   

19.
Summary During a survey of Italian patients with familial hypercholesterolemia (FH), we identified an FH heterozygous patient with a gross rearrangement of the low density lipoprotein (LDL) receptor gene. Southern blot analysis of the proband's DNA digested with restriction enzymes PvuII, BamHI, BglII and XbaI and hybridization with cDNA probes complementary to the 3 end of the gene revealed the presence of abnormal fragments that were approximately 7 kb larger than their normal counterparts. DNA digestion with other enzymes (EcoRV, NcoI, KpnI and StuI) and hybridization with probes complementary to exons 13–17 generated normal fragments and an abnormal fragment of 6.3–6.8 kb. These results are consistent with the presence of an insertion of approximately 7 kb caused by a duplication of exons 13, 14 and 15. This is a novel mutation that is most probably the result of an unequal crossing-over between repetitive sequences located in intron 12 and intron 15. This novel mutation has been designated FHBologna 2.  相似文献   

20.
Approximately 4200 nucleotides of the 16S/23S rDNA spacer and the 5′ region flanking therrn operon of the plastid chromosomes representing the five basic, phylogenetically relatedEuoenothera plastomes were sequenced and compared. The sequences that harbor the putative replication origins are almost identical except for a 785-bp intercistronic segment between the genes for the 16S rRNA andtrnI. Differences are mainly caused by insertions/deletions and duplications; the predicted potential for formation of quite extensive secondary structure differs among the plastomes. Unexpected intraplastome variation has also been noted. Furthermore, the sequence-based and published genetically deduced plastome pedigrees differ significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号