首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bcl-2 inhibits cell death by at least two different mechanisms. On the one hand, its BH3 domain binds to pro-apoptotic proteins such as Bim and prevents apoptosis induction. On the other hand, the BH4 domain of Bcl-2 binds to the inositol 1,4,5-trisphosphate receptor (IP3R), preventing Ca2+ signals that mediate cell death. In normal T-cells, Bcl-2 levels increase during the immune response, protecting against cell death, and then decline as apoptosis ensues and the immune response dissipates. But in many cancers Bcl-2 is aberrantly expressed and exploited to prevent cell death by inhibiting IP3R-mediated Ca2+ elevation. This review summarizes what is known about the mechanism of Bcl-2's control over IP3R-mediated Ca2+ release and cell death induction. Early insights into the role of Ca2+ elevation in corticosteroid-mediated cell death serves as a model for how targeting IP3R-mediated Ca2+ elevation can be a highly effective therapeutic approach for different types of cancer. Moreover, the successful development of ABT-199 (Venetoclax), a small molecule targeting the BH3 domain of Bcl-2 but without effects on Ca2+, serves as proof of principle that targeting Bcl-2 can be an effective therapeutic approach. BIRD-2, a synthetic peptide that inhibits Bcl-2-IP3R interaction, induces cell death induction in ABT-199 (Venetoclax)-resistant cancer models, attesting to the value of developing therapeutic agents that selectively target Bcl-2-IP3R interaction, inducing Ca2+-mediated cell death.  相似文献   

2.
The calcium ion, a major intracellular second messenger, is a known mediator of apoptosis and is regulated by the antiapoptotic protein Bcl-2. A paper by H?yer-Hasen et al. (2007) in the current issue of Molecular Cell indicates that calcium also mediates the induction of macroautophagy in a Bcl-2 regulated fashion and identifies a signaling pathway through which calcium exerts its action. These intriguing findings provoke speculation as to how a cell decides to undergo either apoptosis or macroautophagy in response to calcium signals.  相似文献   

3.
4.
Mast cells reorganize their actin cytoskeleton in response to cytosolic calcium signals while in parallel secreting histamine and other inflammatory mediators. The effect of calcium on actin is mediated in large part through calmodulin. EGFP-tagged calmodulin is concentrated in the actin-rich cortex of RBL-2H3 mast cells. Transfection with small interfering RNA directed against the actin and calmodulin-binding protein IQGAP1 dramatically reduced expression of the latter protein and reduced or eliminated the concentration of calmodulin at the actin-rich cortex. Both actin reorganization and secretion were enhanced in IQGAP1 knockdown cells. Our results suggest a model in which calmodulin is targeted to and sequestered at the actin cytoskeleton by IQGAP1. Upon cell stimulation and the subsequent [Ca2+]i increase, it is immediately available to activate local downstream targets.  相似文献   

5.
The BH3-only protein BAD binds to Bcl-2 family proteins through its BH3 domain. Recent studies suggest that BAD binds to both Bcl-2 and Bcl-X(L), however mediates its pro-apoptotic functions through inhibition of Bcl-X(L), but not Bcl-2. In this paper we addressed this issue using a BAD mutant within the BH3 domain, by substitution of Asp 119 with Gly (BAD(D119G)), which selectively abrogates an ability to interact with Bcl-2. Confocal microscopy revealed that mutation of BAD at D119 does not affect BAD targeting to the mitochondrial membrane in serum-starved COS-7 cells. However, co-precipitation assays indicated that, whereas wild-type BAD (BADwt) directly interacts with Bcl-2 and Bcl-X(L), BAD(D119G) interacts only with Bcl-X(L). Nevertheless both BADwt and BAD(D119G) could introduce apoptosis and diminish the anti-apoptotic effect of Bcl-2 and Bcl-X(L) in a similar manner in a co-transfection assay. These data thus suggest that Asp119 is a crucial site within the BH3 domain of BAD for interaction of BAD with Bcl-2, but is dispensable for the interaction of BAD with Bcl-X(L), for its targeting to mitochondria, and most importantly, for its pro-apoptotic functions. Thus, we confirm that neutralization of Bcl-2 function is marginal for BAD-mediated apoptosis.  相似文献   

6.
Lin B  Kolluri SK  Lin F  Liu W  Han YH  Cao X  Dawson MI  Reed JC  Zhang XK 《Cell》2004,116(4):527-540
The Bcl-2 family proteins are key regulators of apoptosis in human diseases and cancers. Though known to block apoptosis, Bcl-2 promotes cell death through an undefined mechanism. Here, we show that Bcl-2 interacts with orphan nuclear receptor Nur77 (also known as TR3), which is required for cancer cell apoptosis induced by many antineoplastic agents. The interaction is mediated by the N-terminal loop region of Bcl-2 and is required for Nur77 mitochondrial localization and apoptosis. Nur77 binding induces a Bcl-2 conformational change that exposes its BH3 domain, resulting in conversion of Bcl-2 from a protector to a killer. These findings establish the coupling of Nur77 nuclear receptor with the Bcl-2 apoptotic machinery and demonstrate that Bcl-2 can manifest opposing phenotypes, induced by interactions with proteins such as Nur77, suggesting novel strategies for regulating apoptosis in cancer and other diseases.  相似文献   

7.
Phagocytosis of apoptotic cells is fundamentally important throughout life, because non-cleared cells become secondarily necrotic and release intracellular contents, thus instigating inflammatory and autoimmune responses. Secreted "find-me" and exposed "eat-me" signals displayed by the dying cell in concert with the phagocyte receptors comprise the phagocytic synapse of apoptotic cell clearance. In this scenario, lysophospholipids (lysoPLs) are assumed to act as find-me signals for the attraction of phagocytes. However, both the identity of the lyso-PLs released from apoptotic cells and the nature of the phagocyte receptor are largely unknown. By a detailed analysis of the structural requirements we show here that lysophosphatidylcholine (lysoPC), but none of the lysoPC metabolites or other lysoPLs, represents the essential apoptotic attraction signal able to trigger a phagocyte chemotactic response. Furthermore, using RNA interference and expression studies, we demonstrate that the G-protein-coupled receptor G2A, unlike its relative GPR4, is involved in the chemotaxis of monocytic cells. Thus, our study identifies lysoPC and G2A as the crucial receptor/ligand system for the attraction of phagocytes to apoptotic cells and the prevention of autoimmunity.  相似文献   

8.
Crohn's disease (CD) is a condition characterized by excessive numbers of activated T cells in the mucosa. We investigated whether a defect in apoptosis could prolong T cell survival and contribute to their accumulation in the mucosa. Apoptotic, Bcl-2+, and Bax+ cells in tissue sections were detected by the TUNEL method and immunohistochemistry. T cell apoptosis was induced by IL-2 deprivation, Fas Ag ligation, and exposure to TNF-alpha and nitric oxide. TUNEL+ leukocytes were few in control, CD, and ulcerative colitis (UC) mucosa, with occasional CD68+ and myeloperoxidase+, but no CD45RO+, apoptotic cells. Compared with control and UC, CD T cells grew remarkably more in response to IL-2 and were significantly more resistant to IL-2 deprivation-induced apoptosis. CD T cells were also more resistant to Fas- and nitric oxide-mediated apoptosis, whereas TNF-alpha failed to induce cell death in all groups. Compared with control, CD mucosa contained similar numbers of Bcl-2+, but fewer Bax+, cells, while UC mucosa contained fewer Bcl-2+, but more Bax+, cells. Hence, the Bcl-2/Bax ratio was significantly higher in CD and lower in UC. These results indicate that CD may represent a disorder where the rate of T cell proliferation exceeds that of cell death. Insufficient T cell apoptosis may interfere with clonal deletion and maintenance of tolerance, and result in inappropriate T cell accumulation contributing to chronic inflammation.  相似文献   

9.
A quantum pharmacological study has been carried out on nucleosidic inhibitors for HIV-1RT where ab initio HF molecular orbital calculations in conjunction with other quantum mechanical techniques have been utilized in a systematic manner to understand the pharmacophoric features and evaluate specific drug-receptor interactions. The interaction energy between the drug and the closest asp 185 of the catalytic triad has been indicated to be crucial in determining the potency of the nucleosidic drug. This study also emphasizes on identifying important specific drug-receptor interactions and evaluating them at the microscopic level to understand the potency regulation as minor conformational changes may lead to significant difference in interaction energies. Although based on relatively few points our correlation of interaction energies with potency data indicates requirement of approximately 13 kcal/mol threshold interaction energy for the drug to undergo efficient competitive inhibition.  相似文献   

10.
N-ethylmaleimide-sensitive fusion protein (NSF) is essential for numerous Ca(2+)-triggered vesicle trafficking events. It functions as a molecular chaperone to regulate trafficking protein complexes such as the soluble NSF attachment protein (SNAP) receptor complex and the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-protein interacting with C-kinase (PICK1) complex. AMPAR trafficking is fundamental to processes of synaptic plasticity, which may underlie learning and memory. Changes in synaptic strength brought about by AMPAR trafficking are triggered by a post-synaptic influx of Ca(2+), which may have numerous molecular targets including PICK1. NSF binds AMPAR subunit glutamate receptor subunit 2 (GluR2) and functions to maintain receptors at the synapse. In this study, it was showed that NSF is a Ca(2+)-binding protein and that GluR2-NSF interactions are inhibited by the presence of 15 mumol/L Ca(2+). NSF Ca(2+)-binding is reciprocally inhibited by the presence of GluR2 C-terminus. Mutant of NSF that binds Ca(2+) with reduced affinity and binds GluR2 with reduced sensitivity to Ca(2+) was identied. In addition, the interaction of betaSNAP with PICK1 is sensitive to Ca(2+). This study demonstrates that the GluR2-NSF-betaSNAP-PICK1 complex is regulated directly by Ca(2+), allowing for the transduction of Ca(2+) signals into concerted alterations in protein-protein interactions to bring about changes in AMPAR trafficking during synaptic plasticity.  相似文献   

11.
Voltage-dependent anion channels (VDACs) are expressed in three isoforms, with common channeling properties and different roles in cell survival. We show that VDAC1 silencing potentiates apoptotic challenges, whereas VDAC2 has the opposite effect. Although all three VDAC isoforms are equivalent in allowing mitochondrial Ca(2+) loading upon agonist stimulation, VDAC1 silencing selectively impairs the transfer of the low-amplitude apoptotic Ca(2+) signals. Co-immunoprecipitation experiments show that VDAC1, but not VDAC2 and VDAC3, forms complexes with IP(3) receptors, an interaction that is further strengthened by apoptotic stimuli. These data highlight a non-redundant molecular route for transferring Ca(2+) signals to mitochondria in apoptosis.  相似文献   

12.
Death-associated protein kinase (DAPK) is a death domain-containing serine/threonine kinase, and participates in various apoptotic paradigms. Here, we identify the extracellular signal-regulated kinase (ERK) as a DAPK-interacting protein. DAPK interacts with ERK through a docking sequence within its death domain and is a substrate of ERK. Phosphorylation of DAPK at Ser 735 by ERK increases the catalytic activity of DAPK both in vitro and in vivo. Conversely, DAPK promotes the cytoplasmic retention of ERK, thereby inhibiting ERK signaling in the nucleus. This reciprocal regulation between DAPK and ERK constitutes a positive feedback loop that ultimately promotes the apoptotic activity of DAPK. In a physiological apoptosis system where ERK-DAPK interplay is reinforced, downregulation of either ERK or DAPK suppresses such apoptosis. These results indicate that bidirectional signalings between DAPK and ERK may contribute to the apoptosis-promoting function of the death domain of DAPK.  相似文献   

13.
Bcl-2 (B cell lymphoma-2) is an anti-apoptotic member of Bcl-2 family and its overexpression causes development of several types of cancer. The BH3 domain of pro-apoptotic and BH3-only proteins is capable of binding to Bcl-2 protein to induce apoptosis. This binding is the basis for the development of novel anticancer drug which would likely antagonize Bcl-2 overexpression. In this study we have identified BH3 domain of Bax (Bax BH3) as potentially the best Bcl-2 antagonist by performing docking of BH3 peptides (peptides representing BH3 domain of pro-apoptotic and BH3-only proteins) into the Bcl-2 hydrophobic groove formed by BH3, BH1 and BH2 domains (also referred as BH3 cleft). To predict the best small antagonist for Bcl-2, three groups of small peptides (pentapeptide, tetrapeptide and tripeptide) were designed and screened against Bcl-2 which revealed the structural importance of a set of residues playing a vital role in interaction with Bcl-2. The docking and scoring function identified KRIG and KRI as specific peptides among the screened small peptides responsible for Bcl-2 neutralization and would induce apoptosis. The applied pharmacokinetic and pharmacological filters to all small peptides signify that only IGD has drug-like properties and displayed good oral bioavailability. However, the obtained binding affinity of IGD to Bcl-2 was diminutive. Hence deprotonation, amidation, acetylation, benzoylation, benzylation, and addition of phenyl, deoxyglucose and glucose fragments were performed to increase the binding affinity and to prevent its rapid degradation. Benzoylated IGD tripeptide (IGD(bzo)) was observed to have increased binding affinity than IGD with acceptable pharmacokinetic filters. In addition, stability of Bcl-2/IGD(bzo) complex was validated by Molecular Dynamics (MD) simulations revealing improved binding energy, salt bridges and strong interaction energies. This study suggests a new molecule that inhibits Bcl-2 associated cancer/tumor regression.  相似文献   

14.
Through an established gene-targeting strategy, reverse tetracycline-dependent transactivator (rtTA) was targeted downstream of the murine progesterone receptor (PR) promoter. Mice were generated in which one (PR(+/rtTA)) or both (PR(rtTA/rtTA)) PR alleles harbor the rtTA insertion. The PR(+/rtTA) and PR(rtTA/rtTA) knockins exhibit phenotypes identical to the normal and the progesterone receptor knockout mouse, respectively. Crossed with the TZA reporter, which carries the TetO-LacZ responder transgene, the PR(+/rtTA)/TZA and PR(rtTA/rtTA)/TZA bigenics exhibit doxycycline-induced beta-galactosidase activity specifically in progesterone responsive target tissues such as the mammary gland, uterus, ovary, and pituitary gland. In the case of the PR(+/rtTA)/TZA mammary epithelium, dual immunofluorescence demonstrated that PR expression and doxycycline-induced beta-galactosidase activity colocalized; beta-galactosidase was not detected in the absence of doxycycline. Although both the PR(+/rtTA) and PR(rtTA/rtTA) knockins represent innovative animal models with which to further query progesterone's mechanism of action in vivo, the PR(rtTA/rtTA) mouse in particular promises to provide unique insight into the paracrine mechanism of action, which underpins progesterone's involvement in mammary morphogenesis with obvious implications for extending our understanding of this steroid's role in breast cancer progression.  相似文献   

15.
Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals   总被引:12,自引:0,他引:12  
Intracellular calcium signals mediated by IP(3)and ryanodine receptors (IP(3)R/RyR) play a central role in cell survival, but emerging evidence suggests that IP(3)R/RyR are also important in apoptotic cell death. Switch from the life program to the death program may involve coincident detection of proapoptotic stimuli and calcium signals or changes in the spatiotemporal pattern of the calcium signal or changes at the level of effectors activated by the calcium signal (e.g. calpain, calcineurin). The fate of the cell is often determined in the mitochondria, where calcium spikes may support cell survival through stimulation of ATP production or initiate apoptosis v ia opening of the permeability transition pore and release of apoptotic factors such as cytochrome c. The functional importance of these mitochondrial calcium signalling pathways has been underscored by the elucidation of a highly effective, local Ca(2+)coupling between IP(3)R/RyR and mitochondrial Ca(2+)uptake sites. This article will focus on the IP(3)R/RyR-dependent pathways to apoptosis, particularly on the mitochondrial phase of the death cascade.  相似文献   

16.
17.
There are three isoforms of the inositol 1,4,5- trisphosphate receptor (InsP(3)R), each of which has a distinct effect on Ca(2+) signaling. However, it is not known whether each isoform similarly plays a distinct role in the activation of Ca(2+)-mediated events. To investigate this question, we examined the effects of each InsP(3)R isoform on transmission of Ca(2+) signals to mitochondria and induction of apoptosis. Each isoform was selectively silenced using isoform-specific small interfering RNA in Chinese hamster ovary cells, which express all three InsP(3)R isoforms. ATP-induced cytosolic Ca(2+) signaling patterns were altered, regardless of which isoform was silenced, but in a different fashion depending on the isoform. ATP also induced Ca(2+) signals in mitochondria, which were inhibited more effectively by silencing the type III InsP(3)R than by silencing either the type I or type II isoform. The type III isoform also co-localized most strongly with mitochondria. When apoptosis was induced by activation of either the extrinsic or intrinsic apoptotic pathway, induction was reduced most effectively by silencing the type III InsP(3)R. These findings provide evidence that the type III isoform of the InsP(3)R plays a special role in induction of apoptosis by preferentially transmitting Ca(2+) signals into mitochondria.  相似文献   

18.
Bcl-2 is known as a critical inhibitor of apoptosis triggered by a broad range of stimuli, mainly acting on the mitochondria. It can interact with many members of the Bcl-2 family, influence mitochondrial membrane permeability and modulate cell apoptosis. RTN3, a member of the reticulon (RTN) family, was predominantly localized on the endoplasmic reticulum (ER). Its N- and C-termini, both facing the cytoplasm, can recruit some proteins to the ER to modulate some physiological functions. We found that RTN3, which does not belong to the Bcl-2 family, can interact with Bcl-2 on the ER. In normal HeLa cells, ectopic overexpressed Bcl-2 could reduce the cell apoptosis induced by overexpressed RTN3. When the HeLa cells stably expressing Bcl-2 were treated with tunicamycin, endogenous RTN3 increased in the cell microsomal fraction. This change increased the Bcl-2 in microsomal fractions and also in the mitochondrial fractions where the anti-apoptotic activity of Bcl-2 mainly acts. These results suggest that RTN3 could bind with Bcl-2 and mediate its accumulation in mitochondria, which modulate the anti-apoptotic activity of Bcl-2.  相似文献   

19.
Steger KA  Avery L 《Genetics》2004,167(2):633-643
Muscarinic acetylcholine receptors regulate the activity of neurons and muscle cells through G-protein-coupled cascades. Here, we identify a pathway through which the GAR-3 muscarinic receptor regulates both membrane potential and excitation-contraction coupling in the Caenorhabditis elegans pharyngeal muscle. GAR-3 signaling is enhanced in worms overexpressing gar-3 or lacking GPB-2, a G-protein beta-subunit involved in RGS-mediated inhibition of G(o)alpha- and G(q)alpha-linked pathways. High levels of signaling through GAR-3 inhibit pharyngeal muscle relaxation and impair feeding--but do not block muscle repolarization--when worms are exposed to arecoline, a muscarinic agonist. Loss of gar-3 function results in shortened action potentials and brief muscle contractions in the pharyngeal terminal bulb. High levels of calcium entry through voltage-gated channels also impair terminal bulb relaxation and sensitize worms to the toxic effects of arecoline. Mutation of gar-3 reverses this sensitivity, suggesting that GAR-3 regulates calcium influx or calcium-dependent processes. Because the effects of GAR-3 signaling on membrane depolarization and muscle contraction can be separated, we conclude that GAR-3 regulates multiple calcium-dependent processes in the C. elegans pharyngeal muscle.  相似文献   

20.
Apoptotic and autophagic responses to Bcl-2 inhibition and photodamage.   总被引:1,自引:0,他引:1  
Among the cellular responses to photodamage initiated by photodynamic therapy (PDT) are autophagy and apoptosis. While autophagy is a reversible process that can be both a survival and a death pathway, apoptosis is irreversible, leading only to cell death. In this study, we followed the fate of mouse leukemia L1210 cells after photodamage to the endoplasmic reticulum (ER) using a porphycene photosensitizer, where Bcl-2 was among the PDT targets. In wild-type cells, we observed a rapid wave of autophagy, presumed to represent the recycling of some damaged organelles, followed by apoptosis. Using shRNA technology, we created a Bax knockdown line (L1210/Bax(-)). In the latter cell line, we found a marked decrease in apoptosis after photodamage or pharmacologic inactivation of Bcl-2 function, but this did not affect PDT efficacy. Loss of viability was associated with a highly-vacuolated morphology consistent with autophagic cell death. Previous studies indicated pro-survival attributes of autophagy after low-dose PDT, suggesting that autophagy may be responsible for the 'shoulder' on the dose-response curve. It appears that attempts at extensive recycling of damaged organelles are associated with cell death, and that this phenomenon is amplified when apoptosis is suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号